
"$

1980004512

PROGRAMMING IN HAL/S

MICHAEL J. RYER

,/

t

1980004512-002

PREFACE

"lllis mamtal ts intended as an introduction to programmmg in ItAL/S. The reader is
presumed to have some experience using one or more procedure-ortented languages such as

FORTRAN or PL/I l'he book may be used either as part of a sell_tudy program or in con-
junction with a course of twenty to ff_rty classroom hou _ over a period of one to two
weeks.

The material is orgamted as a tutorial rather than as a reference book. Furthermore. it
ts intended as an mtroductton to |iAL/S rather than as a definittve exposition. After como
pletmg the course, tire reader should refer to the IIAL/S Language Specification or the

s IL4 L/S Programmer _ Guldt' for a more detaded and complete description of th," I:,_Jlguage.

It ts impossible to give proper credtt to all the people at NASA. IBM, and Intermetrics

who have contributed to this book Special recognition must go to Josephine Jue. John
Schwartz, and AI Mandehn for their detaded review of several drafts of the mant.script, to

(;ar_ Stager for performing the final editmg and page layout, and to Valerie Censabella who
typed all of the manuscrtpts and got the majority of the exercises through the ItAI./S-3thO
compder.

Support of the ItAL/S language, compilers, and documentation ts an ongoing effl_rt of

NASA and Intertnetrics. Comments on thts manual will be appreciated and will be incor-
porated into subsequent edlttons. All comments or inquiries should be addres,,,cd to

HAL/S LanguageGroup
NASA- Jet Propulsion Laborator_
Programming Development Section
Mail Stop 124-241
4800 Oak Grove Drive
Pasadena,CA 91103

• _ (21_' 354-3289
J Michael J. Ryer
, v _ptember IO78

,r,

1980004512-003

PREFACE TO THE SECOND EDITION

The first edition of Progremminl_ in HALLS has found a welcome home ==1the _owmg
community of ttAL/S users. It has proven to be quite useful as both a teaching aid. and for
the independent study of ltAL/S.

This edition contains a new ch;_pter on FIXED data types and a new appendix on
FORMAT 1/O. A number of corrections have also bee==in,'orporated .nto the text.

Special thanks for work on these chapters go to Steve Gallant, Mark Davis, Bruce
Knobe, and Fred Martin.

September 1079

j

• =r

1980004512-004

VII

• T, _BLEOF CONTENTS

Section Page

1.0 INTRODUCTION ... I-1
1.1 LearningHAL/S After FORTRAN I-I
1.2 HAL/SContrasted With Other HighOrder Languages I-2
1.3 HAL/SContrasted With the Assembly Language 1=4
1.4 Introduction to the Mare Text I-5

2.0 READING,WRITING,AND ARITHMETIC 2-1
2.1 Writinga HAL/S Program 2-1
2.2 Aritl',meticExpressions 2-5

2.2.1 ACompiled Example 2-9
2.3 Declaring Data .. 2-11
2.4 Executable Statements 2-15

3.0 MOREBASICS .. 3-1
a 3.1 Bmlt-ln Functions 3-1

3.2 Subscripts .. 3-7
3.3 The REPLACEStatement 3-12
3.4 The PrecisionAttributes 3-15
3.5 Summary of the Arithmetic Expression 3-19

4.0 CONDITIONALEXECUTION.................................. 4-1
4.1 IF...THEN...ELSE 4-1
4.2 The DO...END Group 4-9
4.3 Booleans ... 4-16
4.4 DO CASE and GOTO 4-20

5.0 LOOPS .. 5-1
5.1 The lterative DO FOR Statement 5-1
5.2 The Discrete DO FOR Statement 5-6
5.3 The WHILEClause 5-7
5.4 The UNTILClause 5-8
5.5 EXIT and REPEAT 5-11

•
6.0 ARRAYS .. 6-1

, t 6.1 Arraysof lntegers and Scalars 6-1
6.1.1 Additional Examples 6-6

6.2 Operations on EntireArrays 6-10
6.3 Arraysof Other Data Types 6-15

6.3.1 Arraysof BOOLEANs 6-19
6.4 Functions of Arrays 6-22

6.4.1 Shaping Functions 6-23

1980004512-005

viii !

TABLE OF CONTENTS (Continued)

Section Page

7.0 PROCEDURES AND FUNCTIONS 7-1

7. I User Defined Functions 7-I .,
7.2 Arguments and Parameters 7-7
7.3 Procedures ... 7-q

7.4 Scoping Rules ... 7.13

7.5 ARRAY(*), AUTOMATIC, and NONHAL 7-14
7.5.1 Automatic Initialization 7-15
7.5.2 Tile NONHAL Attribute 7-15 1

8.0 I/O AND CHARACTER STRINGS 8-1
8. I The WRITE Statement 8- I
8.2 I/O Control Functions 8-6
8.3 The READ Statement 8-9
8.4 Character Strings 8-12
8.5 Oth,'r HAL/S I/O Constructs 8-18

8.5 I The READALL Statement 8-19

8.._.2 The FILE Statement 8-21
8.3.3 Avionics I/O 8-22

9.0 STRUCI'URES ... 9- I

9. I Declaring and Referencing Structures 9-3 ,.
9.2 The Structur_ Template 9-6

9.2.1 Template Matching 9-11
9.3 Multi-Copied Structures 9-12

9.4 DENSE. RIGID, and "Unqualified". 9-18
9.4.1 The DENSE Attribute 9-18

9.4.2 The RIGID Attribute 9-20
9.4.3 Unqualified Structures 9-21

I0.0 ERROR RECOVERY 10.1
10.1 TheON ERROR Statement 10-2
10.2 Deactivating Error Handlers 10.8
10,3 Other Error Control Constructs 10.12

I 1.0 STRUCTURING LARGE APPLICATIONS I I-I
j"

I I.I The Unit of Compilation I I-I
• ' 11.2 Building a Program Complex ! I-6

11.3 Multi-Programming Considerations 11-13

_!2.0 REAL-TIME STATEMENTS 12-1
12,1 The SCHEDULE Statement 12-2
12.2 Event Variables 12-8
12.3 Other ReabTime Statements 12-16

1980004512-006

IX

TABLE OF CONTENTS IContinued)

_'ction P_ge

13 t) SYSTEM PROGRAMMING AIDS 13-1 ?

13,1 Bnt Strings ... 13-1 ;.

13.2 Name Variables 13-11 • -0

13.3 L_st,, and Queue.,, 13-15 - .'.

14.0 FIXEI) POINT 14-1

14.1 Intn)duction 14-1

14.2 SL'ahn_, 14-2

'4.3 Expressions 14-3

14 4 Shap,ng Function.,, 14-4
14 5 VE('TORF and MATRIXF 14-5

14J') Scahng Revisik'd 14-5

t APPFNDIX A ... A-I

APPFNI)IX B .. B-I

APPENDIX (" . .. C-I

APPENDIX D ... D-I

APPENI)IX E .. E-I

INDEX ... I-I

J

,4

• o-

r 1'
• 15 'll ''r

1980004512-007

Learning HALLS alter FORTRAN 1-1 /

1.0 INTRODUCTION

HALLSis a computer programminglanguage; it is a representationfor algorithms which
can be interpreted by either a person or a computer. HALLScompilerstransform blocks of 4"
HAL/S code into machine language which can then be directly executed by a computer. '_
When the machine languageis executed, the algorithm specified by the HAL/Scode (source) ::
is performed.This document describes how to read and write HALLSsource. ,:

HAI./S was developed principally for real-time aerospaceprogramming.Its most signifi-
cant use to date has been the production of the NASA Space Shuttle Flight software. This _"

intended application imposed three major constraints on the la_tguagedesign: reliability, ._
efficiency, and machine-independence. Reliability and efficiency are obvious requirements
of flight software. The machine-independence requirement stems from a desireto mi.imize
programmer training, to transfer blocks of proven code between distinct NASA projects,
and to reduce the dependenceon flight hardwareavailability.

Within these conqraints, the language provides simple and intuitive constructs for func-
tions commonly performed by aerospace applications, such as vector/matrix arithmetic.
More generally, HAL/S is suitable for real-time process control applications, particularly
where mathematically-oriented algorithms are involved. Whilethe languageis "tuned" for "
aerospace, the machine-independence and reliabilityaspects of HAL/S make it attractive for
a variety of applications which do not perfectly match the original intent.

It may seem strang_ to some readers to attribute reliability to a programming language
rather than to programs written in that language. This viewpoint is an outgrowth of the
study of structured programming. A reliable program produces correct results for all pos-
sible combinations of inputs. Since it is usually impractical to exercise the program on all
possible inputs, prograrhs must be verified by induction. The assertion is made that if the
program passes a particular set of tests, then the program will produce correct results for
any set of inputs. This assertion is always based on an understanding of the program's
internal workings. If the logic of a program is misunderstood, the results of verification
cannot be relied upon.

Although it is difficult to assess the psychological implications, certain high order lan-
guage constructs (e.g., the GOTO) are known to be symptomatic of unreliable programs.J

• I , Theseconstructs have been eliminated or highly restricted in HALLS.

1.1 LEARNINGHAL/S AFTERFORTRAN

HAL/S is similar to FORTRAN in many ways. The assignment statement is essentially
)

the same in both languages. The FORTRAN concepts of subroutines, arrays, common
blocks, and libraryroutines all have analogues in HAL/& Some concepts have been ex-
tended; for example, the FORTRAN statement A-B+C can be used to aad either integers
or reals: the compiler generates instructions appropriate to the types of A, B, and C. In
HAL/S, the same concept applies, but A, B, and C may also be vectors, matrices,or arrays
of any type. HALLShas many mon_data types than FORTRAN.

E_ery variable used in a HALLSprogram must be explicity declared before it is refer- : _
enced. This is done via the DECLAREstatement, which specifies the name of the variable
and its attributes (including its data type or "mode"). The need to declareviriables results

! :

1980004512-008

++

1.2 Introductzon "

4

from :he wtde variety of data types In tIAL/S. It also allows the compiler to check for mis-
use o1 data and to enforce ccrtam programming sta+_dards. For example, a FORTRAN pro-
grammer m_ght divide a variable conta,nmg alphannmeric character data by the number 25(_
m order to access the leftmost byte. tIAL/S does not allow any arithmetic operations on
character data since such operations usually depend on the particular character code in use
and are thus machine-dependent. Instead, mdividual characters may be extracted from a
,:haracter variable by explic't subscrtptmg. Smtilarly, binary (logical) data is a distinct data
type+ the AND, OR, and NOF operators may be used with BOOLEANS or BIT stnngs, hut
not with artthmetic data.

These restri_'tions may ._em awkward at first, but with experience it will becc-,me quite
natural to select the appropriate type for each vartable in advance, liAL/S in,:ludcs con- _-
structs for data type conversions+ but these conversions are needed less frequently than an
experienced FORTRAN programmer mtght expect.

Another ruder dtfl'crencc between HAL/S and FORTRAN is in the flow-control {branch-
ing) statements Structured programming research has had a major impact in this area in

essence, the various forms of GOTO statement have been replaced with more reliable con-
structs. The dtstinction may be characterized as "'flow control by r_estmg of statements"

rather than "'flow control by branching". While this difference of philosophy may make
the transition to HAL/S from FORTRAN more difficult, it can be argued that the HAL/S
form is more English-like and thus move intuitive. Furthermore, using the HALLS flow-con- .+
trol constructs instead of GOTOs tends to result in a program which can be read sequentially
(from top to bottom). Loops and decisions are e'_pressed exphcitly in HAL/S rather than
implied by a convoluted arrangement of forward and backward branches. In any case. most
modern programming languages (including FORTRAN '77) have flow control statements of
the type found m HAL/S.

While the treatment of data types and flow control are the most fundamental differences
between llAL/S and FORTRAN, the differences in so_rc_ and listing formats a+e the most
noticeable. The source format is somewhat freer than in FORTR_,N, "lh¢ output listing
format, however, is not under programmer control at all. l.very ItAL/S listing is put m a
standard format by the compiler. Each |[AL/S statement is placed on a new line and auto-

• _ maritally indented to show its relationship to otheT neighboring statements. Exponents and
• 4 subscripts are raised and lowered (respectively) m the listing, and various additional informa-

tion (compiler.generated annotation_is added. Thus, the work of the programmer is reduced,

the indenting is always correct (since the compiler re-computes it every time), and reading a
listing required no knowledge of the individual programmer's style,

Other major differences between IIAL/S and FORTRAN are in the areas of Real-time
interactions, and the interfacing of separately complied units, fhese advanced topics are

thoroughly discussed in chapters eleven and twelve of the text,

1.2 HAL/S CONTRASTED WITH OTHER HIGH ORDER LANGUAGES

The differences between HAL/S +rodother high order languages arise trom the charac.
teristics of aerospace applications, and the time-frame in which iIAL/S was designed. HAL/S
was developed between Iq70 and Iq72. Since that time, changes which would invalidate
existing HAL/S code have been resisted. Thus, .some recent advances hi language design have
not been incorporated. Note. however, that the language did evolve from a thorough study

J

t _ +

1980004512-009

IIA I :, c'onttasted wath Other Illgh Order Languages 1-3

of the existing languages. Most of tile _on='ept_ wluch have been developed since that time

have not been implemented in any Ol_eratmrm/trather than expertmentaD language. When
the_ concepts (e.g. data abstractionl h:lv(, b_'en proven out,_lde of the university en_jron-
meet. tht:y may be incorporated lit tIA[S l!v.'re is an estabhshed language control board
which continuously reviews the state of lhc ..,el md suggest,, and/or approves changes to
tIAL/S

Some features which were m _,ommon u,,cat the time were ex_-_uded due to offlciCnc__

considerations i'he_ include recursion and dynamic _torage allocation In addition to the
overhead normally associated with these facilities, a reliability problem is avoided by theft
exclusion Because of these and other exclusions, the total storage requirement eta HAL/S

application can be exactly determined before exectttion starts ('on_t|uenlly. HAL/S pro-
grams can never run out of storage dur;ag execution, This safety feature is essential m

aerospace applicat|ons.

Other constructs, such as the ',.'allgenerahty of the PL/I error recovery sy,+tem, have also

been omitted for reasons of efficiency

HAL/S able lacks sophisticated tat|lit|e,, for dealing with ground-ba_d peripheral devices

(printers. plotters, etc.). Character-oriented I/O statements are provided for testing and
development, but many I/O facilities provided by ground-based operating systems are m-
accessible from IIAL/S Thi._ is due to th,_ design emphasis on flight .+oftware, and the lack
of ,+tandardJzation of the concepts and facilities of ground-based operating systems

HAL/S _tre_.ses readability rather than "writability'" This approach acknowledge,, the

tact that a program is written once (generally by one per,,_.onLbut is re:td many times land
often by many people|. For Instance, there are no abbreviations for HAL/S keywords.
Furthermore, all of the keyword5 are "'reserved". No confusion can an_ from variable
names which duphcate kt_ywords, because no such re-use eta keyword is allowed.

On the other hand. tiAL/S includes some facditie_ which other language.i lack. Vector/

matrix arithmetic has already been mentioned: itAL/S vectors and matrices are distinct
from arrays, and are supported by a full set of operations. These include cross and dot
product, as well as addition, subtraction, multiplication, division, and exponentmtton. All
are defined according to the usual rules of mathematics.• #

• _ Although HAL/S contains features abstracted from a variety of languages, it exhibits a
considerable unJforotity. I-or instance, a portion of a variable is always _lected by sub_ript-
ing. whether the variable is a 3-vector, a character string, or a set of bits comprising a
computer word.

Finally, there is one difference which ts not exhibited in the language per se. This may
be termed the "system" asp "ct of tlAL/S In addition to the listing and a machine-language
"object module", the compiler generates a machine-readable random access f.le containint
information about every variable and statement in the program. This file is then used by
various statistics and diagnostic packages, Furthermore. some compilers can optionally in-
sert "hooks" (diagnostic package interfaces) in the generated code. These interfaces are used
in a functional simulation fFSIM) execution mode.

1980004512-010

1.4 lntroductmn

FSIM is a tool which allows flight code to be d_'veloped and te,_led on ground-based
computels. It includes a model of the flight operating system, and simulates the timing of
the flight computer It also includes provisions for the simulati.)n of aviomcs I/0 This is
done in such a way that flight code can be executed on a ground-based c mputer without

any source-level changes whatsoever. Debugging commands are entire_y ba_d on the HAL/S
source, the program can be debugged w,thout knowing any details of the ground computer
hardware. More information regarding the compiler and related software can be found in
Appendix B of this manual.

i.J HAL/$ CONTRASTED W|TH THE ASSEMBLY LANGUAGE

This manual is primarily intended for experienced high order language programmers; this
section presents some brief background information for programmers whose experience has
been primarily in assembly language

The term "high order language" refers to languages in which a line of source produces a
variable number of machine instructions. Some readers may initially view fIAL/S as a tool

for specifying machine instructions more compactly.

Many assemblers allow expressions, such as "A+B/C'" in certain contexts where a num-
ber is needed. The symbols used in these expressions must have values known to the assem-
bler; i.e.. A, B. and C must be equated to constants in some way or must be macros which
expand to constants or literais. The computation is done at assembly time and the output of
the assembler contains just the value of the expression.

This facility is present in HAL/S. There is, however, an _mportant distmctmn: if the
v;dues of the symbols used in a HAL/S expressmn are not known at compile-time, then ma-
chine instructions are generated to perform the computation at run-time. Most of the com,

putatton in a HAL/S pn_lram _s specified by means of e._tptcss_ons. There are no ADD or
SUBTRA('T HAL/S statements, all arithmetic is done with operators (e.|., "+", , etc.).
The "'+" operator will add mt_ers, scalars, vectors, matrices or arrays of any of thee¢ basic
types. The _m¢ operator performs both sinl_ and double prec_on arithmetic. Thus. the
compiler "decides" what particu 'Ira"machine instructions are appropnat¢ to add the specified
operands together. This is one type of bookkeeping that is automated by the compiler.

J* This approach illustrates another meaning of "high order language", the programmer
,11,

• I is farther removed from the details of the computer hardware. The programmer specifies
a function (e4L, addition) and the compiler maps it into the computer's repertoire (e.|.,
LOAD, ADD, STORE;. All addmmnl and instruction mille deemons are also the province
of the compiler. :,

Unlike a macro assembler, the compiler does not always generate the same instruct/on
sequence for a liven source statement. It can "'remember" whelher a variable is still in a
register from some prior statement, and. if so. avoid r_-Ioadinl it. The compikr may alw
move an entire computation out of a loop if none of the variables re(erenced ate modified
within the loop. C,enerally, the compiler is free to make any re-arrangement o(the program.
provided Ihat the same results will be pt'oduccd from its execution. This means tlhll it is
nearly impossible Io predict whal machine instructions will be generated when a partk'ular
IIAL/S statement Lscompiled. Hence, the I_est policy is to specify the desired/unclion in
the most intuilh'e way and ignore the mapping into machine ;nstructions

¢

0

1980004512-011

Introductum to the M#m Text I.._

rher_, ,, no w;ly to r_.,lerencca i_artic'Lddr n13chll|L" rcgisler or v,ord ol Incnlor+, ii1 a
llAL/b program Operalit,'n', are pcrh)rnlcd on varlahle_ and +,:t)nstanlsrather than addru,,_'s
anti regl,_lers All _uch a_.sigmnenl,, are made by the compdcr A large ,.'la,;,,ot potcnllal
programmer errur_ (c g. t,,_ol the wrong register) t_avoided by th|s approach

1.4 INTRODUCTION TO THE SLAIN TEXT

[he follow,ng chapter,, des,.r|hc the IIAL,S Language, a lew advanced features arc
onHtted, bu| Int,st of the language |_ Lo,,ered. including all ol the IrL.q,Jently used Lon-
stru,:ts |'h_s manual =s Intended for scqtJcnllal reading lhe liAL/S Language SpccH'Jcatlon
|,_more approprlalCfi_ru.,.,as a reference,s|nccit is concise,colnpletc,and ful[_,cross-
referenced rhls manual,bc|ngtuh)r_a]m nature,dcs,.'rlheseach facetof thelanguage|n
termsof the materialpre_'nted|n prev|ouschapters mteractff)nsbetween separatecon-

structsare not dl_'t|ssed untileachconstructhasbeen de,_rtbcdwparately ! ,|oh chapter
tsa prLrequlsltc[othene,,[hut no otherknowledgeof IIAL/Sisatsumed.

Another do,.ument, the HAL/S Programmer's (;rode, Is also tutor|al |n nature, but
ea¢l_chapter is_ll contalacd mater|al|srcpeatcdinsteadof referencedHence, the
programu_cr's gmdc ma), be the best _.holcc for "'brushing up" on _ome partzcular a,,po.t

of the language.

rhe mr'urination .,.cded to compile (hn_. run and debug) a tlAL/S program, once it
|s written, _.an he found m the HAL/S U_r's Manual for the parhcular compdcr m uvc
I+hcvc documents al_) descrlbe_armtlons .mlong compilers (|.e, implenlentat|on

dcwndcncles)

[he chapters which follow e_plam]IAL/S pnmardy hy c_,ampl¢ the t.rm o! caLI;
constru+.t |s always shown hy example, the examples are so constructed that the ttii',Jnlng_
of new lorms can he deduced. Tho_ who learn eas|ly from e,_amples may find porhons o!

the Fnglish explanat|on redundant In ever),' ca,¢, the e_a;nples arc intended to he read from
top to bottom when they arc first referenced, rather than after the new constructs have
been ¢xplametl

['he occasional tables and hsts need not be memorised. If the exert=sos can be done

after one reading, furtner study is not needed the most |,nportant constructs are us¢d
freely m subsequent chapters, thus providing a continuous rev|ew of earlier material It

a" I would be d|fficult to learn tlAL./S without writing any IIAL/S programs, about one-half of
the exerc_s require programming Answers to all are given |n Appcndi_ ('.

Computer words which ar_ not defined hereto (e g, algorithm, program) may be :a!:en
at their ¢onvent=onal meanings. In somecase+.,a more preci_ llAL/S meaning is _¢ivenlater
i)¢finitions are denoted by itahcs a,+m "the form and meaning nt'a langt.ag¢construct are
generallytermedits' 'nl_¥altd.yettlanli_'_,respectively"

Chapter Two contains enough mformatmn to write a IIAL/S program thai really dm_
_mething Chapter -[hree completes the topics introduced m ('h'-:Fter Two, primarily ",addi-
tional forms of the arithmetic espre_s_on, The remaining chapters discuss flow control, addi-

- tionai data types, and advanced topics s_ch asreal-time programming

+

1980004512-012

Wr;tmtta I14L'5l'rotram2-I

2.0 READING. WRI] ING. AND ARITHME] I("

The r_i_slcrules for writing a HAL/S pr_gr_un arc _hown in the exar':'_le below

SIMPLE. PROGRAM.
C CODF IN THIS TYPEFACE IS
(" HAL/S SOURC!

DECLARE Pl CONST#NT (3 141502bl,),
Dt'(IARF R S('A[AR:

REAiNS) R.

WRITE((,) Pl R "2,

CLOSE SIMPLE:

2.1 WRITING A HALLS PROGRAM

The example above consists of six ltAL/S statements and two comments. 1he qrst ._tate-
ment serves to Illustrate several convention, used throughout the language.

I. Every program begim with a labeled PROGRAM statement.

2. HAL/S statements are labeled by preceding them with an u' 'nti/_er and a colon.

3. All HAL/'_ statements end with a semi-colon.

The two lines following the PROGRAM statement are comments. For furtt:er clarifica-

tion, additional Im_ could be used. Any line containing a C in column one is a comment.
Con,ment lines may be placed anywhere in a program.

The next statements are DECLARI. statements. These statements form the detlare

group, which precedes the executable _lalemcnl_ in every program. Variables are created via
the DECLARE statement. Variabk_ must always be declarers before they are used. READ
and WRITE arc executabk statements. The numbers 5 and 6 m parentheses are channel
numbers. They control the routing to and from an external device. Many other executable
statements will be intrnduced in later chapters. CLOSE, hke PROGRAM, h a delimiting
statement: It is the last line of every program The block delimiting statements are ftlrther
discmted _r,)" _pt.'r seven. "rl_ chapter stresses the DE('LARI: statement and the assignment

p _!atement (not shown above).
j"

• a' ,_ In this simple example each staterr_nt could be punched onto a card just as shown
HAL/S source _ free format: There art no r,,le_ at_out pam, ular ,'ard c,dumn_ e_cept
column one. Column one mutt contain one of the characters E, M, S, C, D or blank. Normal
statements are written with a blank in column one. "C" is txu_d for comments, the use of
the other characters will be discussed lat,.r.

Wben a program htstored on di-k or tape the format i,t the utmc. Column one is defined
at the tint character of a record or the character following an end of line code, With this

' exception, the arrangement of HAL/S source tm cards or records doei not affect its mter-

* pretation by the compiler. The example above could also be put at

tb

1980004512-013

- Readmg. Writing. and Arithmetic

_ SIMPI I PROGRAM.
(' FIllS IS IIAL/S SOURCI-

DFCI.ARE PI COIkSTANI" 13.1415'02(,(,): I)ECIARI:

R SCALAR: RI:AI)(5) R, '6'RITi,(b)

Pl R**2: CLOSI' SIMPLE:

l.onger |)rogralns are not always written correctly lilt" first Inne Pla.ing only o," state-
nlent cma line makes later IlWKhlleations much easiel.*

Smce every statement ends with :1semi-colon, no addmonal convention is needed for
long statements. It i_ the ._Cmlt,Olofl rather than fh(" ('rid _)f a low that tlltlrl_,_"the t'nd o/a
,slalc.lt'nt "|'oput :lconlmenl aflel a st)lenient on tile same liP.¢, the "'/*'" |'orln can I1e ILNed.

[:or illslall¢C :

R|:AD(5)R, /*OBTAIN RAI)ILIS*/

WRITF(O) PI R**2. /* ** MI'ANS I'.XPONI'NI'IATION */
|

i'hi,_ type of conlnlent nlay I_leplaced anywhere a hi'ink is allowed (except II1coltllnn

one). It consists of any string of dlaracters beginnihg with "/*" and tndmg with "'*/". As
tile example shows. "'*'" and "/'" nlay be used within the string in ally cotnhm:ltion ()tiler
|han "** I"

The WRITI' stalement could also hc coded a.',

coJtlnln J

F 2

M WRH'E(0) PI R,

Here, colunm one is used to distinguish between n;ain and exponent lines. Some implemen-
tations of IIAL/S accepta two dinlensional inpulformat illwlueh exponents and subscripts
are indicated by their positions. Multl-hne Input is generally not used however, since enter-
Ing arid nlalnlalning source ill Ihis fornl is CutAibersolne I.nldgt ct)mnlon editors or on cards,
1"he conlpller produces hslinl_i in tire mult;-line fomlat but all ,_,,.rcc m this book will be
shown ill the single-line form.

• 4 "]'he i_ieccding paraguiph,_ _lt_cribt" file plaeelllenl of statements ill a file or on ¢:lrds.
Next we wdl discu_,_tile fom_at of redly)dual starenlents.

"llle PROGRAM and ('I,OSE statements each contain tile keyword, :in itb'ntifier, and
punctuation, Keywords :lie the "verbs" ill HAL/S. Each has a predefined meaning, and
sO cannot he used as a variahle nanle, A complete list of keywords is given in Appt'ndix
I). All of tile IIAL/S keywords ate hi)de up of the letters A !hrough Z. Except for tile
ARCTAN2 function, no nunlerals are used. The underscore, or "break character" () i_
not used in ally IIAL/S key,vord.

*Some dehul_in8 syslenlz allow a breakpoint to he set at Ihe statement on a particularcard(specifiedby
,f' _qnent.'enumber). Placintltonly nne statement per line alsosimplifiesthis usage.

if, *,

1980004512-014

Writmg a HALLS Program 2-3

Blanks, or spaces, are significant in HAL/S. For instance, DECLARER is a valid identi- ':
tier. It would nerer be interpreted as DECLARE R. Blanks must be coded between key-
words and identifiers in any combination. Except in comments and character strings,
however, there usno difference between one blank and many blanks. :

A
The compiler sees its input as a continuous stream of characters, i.e., the concatenation

of columns 2 through n of the entire input file. This input is split into words at the punctua-
tion: blanks, commas, semi-colons, etc. The punctuation is in two categories: delimiters

such as :, :, and blank, and operators such as +. -, blank, and /. When a blank appeals "i
between two identifiers or expressions it serves as the multiplication operator. Otherwise,
it is a delimiter.

Using the punctuation, the compiler breaks its input into a series of tokens. Tokens are
of tbur types:

I. Keywords such as i)ECLARE

2. Identifiers such as R

3. Operators such as ** or blank

4. Literals such as 3.14159266

Each HAL/,; statement is defined in terms of these token types. For instance, the basic

DECLARE statement consists of the keyword DECLARE followed by an identifier
followed by attributes. The attributes consist of keywords and literals. Like all statements,
DECLARE ends with a semi-colon.

Identifiers consist of variable names and labels. The identifiers in the sample program
are SIMPLE, Pi, and R. Identifiers may be from one to thirty-two characters in length,
and composed from the letters A-Z, the numerals 0-9 and the underscore. Thefirst character '_
must be a letter: the last may not be an underscore. Selection of names is entirely up to
the user:

DECLARE SIGMA CONSTAN'I (3,14159);

is syntactically correct. The underscore may be used in an identifier to write an identifier
• _ composed on more than one word: DELTA V and TIME TO GO are valid identifiers2$

t' •

There is a trade-off in identifier lengths: Very short identifiers, such as RLNGL, make

for cryptic code, whereas very long identifiers, such as CURRENT_VEHICLE ROLL_

AN(. i.E, make it hard to find operators and match up parentheses in expressions. Identifiers
may not be started on one card and continued on the next. Since the card boundary serves
as a delimiter equivalent to a space, long names cap be awkward.

HAL/S does encourage self.documenting proiprams through meaningful identifier names.
This author's preference for a mixture of long and short names is generally displayed
throughout this manual. Sometimes this text uses underscores and numerals in identifiers

to distinguish them from key_ rds. The HAL/S keywords cannot be used as identifiers. A
few to be careful of are: SUM. IN. SET, LINE and TRACE. None of the keywords are less
than two characters.

1980004512-015

2-4 Reading. Wrttotg. ,znd Artthmctw

The third type of token is an opera,or. IIAL/S includes logical and character operators
as well as the ;trithn_¢tic operators hsted m Section 2.2.

l"he fourth t._pc of token is :l literal There are arithmetic, character, and bit hterals. .
though only :lrlthnletic literal,,, are of concern now. Throughmnt tills book. arilhnlcllc

literals are called simply mlmht'rs

While tlAL/S has both integer and scalar datatvlws, it does m)t distingt, tsh between ;.
integer and scalar numbers. "3'" Is completely equivalent to "3.0". "3.14159" is completely
equivalent to "314159/100000", and to "'3141591(-5 ". "31415.qE-4" ;rod so forth. The
character I. is used in numbers to indicate scient,fic notation. The form "3141501:-5"" Is

Inlt'rpwletl ,P;

31415q x I0 5

or
I

(31415q)10"*(5).

Thus. nt,mbers can be written as a ,,,equence of digits with or without a decimal point.
opt,onally followed by the letter E and one or more digits. The mmt,s sign () is used I_r

negative humbers and exponents. The IIAL/S Language Specification describes the use of
other exponent letters to specify powers of two or sixteen instead of ten.

No hlanks may appear IIi d ntmlber. Blanks nlLlSt separate nllnlbel'._; from adjacent ke.v-
word._, identifiers and htcrals.

TIw statement,

I)ECLARF PI CONSTANT(3+I/7');

ts completely valid. "3 + I/7"" is considered a tltttHht'r rather than an expression. An ex-
pre.,,slon which contains only numbers, CONSTANTs, and the basic arithmetic operators is

said to be comptttahh' ttl compth,-ltme. Instead of generat"lg code to evaluate such an

expression at runtime, the compder will convert the expre_ion to a simple number. Only
,_" the value is kept at runtime; the addition and division in "3 + I/7" are performed during
. • compilation. When this manual refers to numbers, any expression ,hich can be reduced to

a number during compilation is included.

In sunlnlary, a IIAI,/S program begins with a labeled PROGRAM st;itelnent and ends
with a CLOSE statement. In between Is a declare group followed by executable statements.
These statements Inay be arranged in any convenient way on successive cards or lines, pro-
viding th:lt cohmm tree is blank. All statements must end with a senti-colon. _tlt comment

lines and comment_ within statements are allowed. Statements consist of a sequence of

tokens separated by blanks or other punctttation; the tokens are of four types; keywords,
identifiers° operators, and literals. Most of the HAL/S keywords and operators will be de- ":

" ,_ribed later. The rules for forming and recognizing tokens of each type have been pre-
sented here.

1980004512-016

_" ArRhmetic Expresston# 2..5

Exercises

2.1A Some of the following are valid HAL/S tokens; some are rJot. Identify the valid _
toker, s, and state the type of each. _,

- Note: Appendix D contains a complete list of HAL/S keywords.

a) TEST TIME

b) CHARACTER

c) TRY AGAIN i i
.i

d) 7.1E-14
4

e) X
0 IABC

' g) DEC LARE

h) INITIAL

i) ALTITUDE i

. j) TRUE
i

k) 4.2.1

:' l) QUITE A LONG_STRING i

m) !0000000

! 2.2 ARITHMETIC EXPRESSIONS

Like most high order languages, HAL/S allows numeric computations to be specified

in a form very similar to ordinary mathematical notation. For instance, the equations below
: should be quite recognizable in their HAL/S forms: i

AREACIRCLE = Pl R**2; /*CIRCLE'/ _,
AREA_TRIANGLE = 1/2 B H; /*TRIANGLE*/
PYTHAGORUS = (H**2 - B*'2)**(I/2); /*PYTHAGORUS*/ i

_ AREA_TRAPEZOID = H(A+B)/2; /*TRAPEZOID*/

•

i 'f _ _ This example illustrates the forms of some familiar equations in HAL/S.

This example shows four assignment statements as well as a number of arithmetic ex-
pressions. The assignment statement is much as in other languages: the value of the expres-
sion on the r_-,ht of the equals sign is assigned into the variable on the left. This section is
primarily concerned with the evaluation of the expression on the right hand side.

t

; The example .,hows addition, subtraction, multiplication, division and exponentiation
{ operators. As in mathematical notation, multiplication is indicated by ad/acent factors: no

special character is used to stand for multiplication. Sometimes the blank is referred to as a
¢ multiplication op._ator, since adjacent identifiers must always be separated by a blank.

However, it is the ad/ecency and not the blank that indicates multiplication. For instance,

"Pl R**2" can be written without a blank as "PI(R**2)" or "(PI)R**2" or R(PI)R".

1980004512-017

2-0 Read#ng, Wr_Img, and Arllhmelt¢ 7

The other basic operators contain no surprises, The hyphen or minus sign is used for /

both subtraction and negation. Parentheses control the order of valuation in the usual way.
The table below shows the, _ajordifferenccs between HAL/Sand mathematical conventions:

Mathematical Notation HAL/S Expression

ab a b

2x 2 x

nx n-I n x**(n-ll

/ 2 mS

/ a+b,_ (a+b)/(c --d D* *2.5 _.

xy
-2a"--_ _ y)/(-2 a b)

agx+l) _ (x+l)

Mathematics defines several con_x,ntious to reduce .he need for parenthesis in expres- 0
sions. For example,

AX+BY *

is always interpreted as the sum of two temls, (A X) + (B Y) rather than as the product of
three factors, A(X+B)Y. These conventions are stated in terms of the order of evaluation of "

various constructs. In particular, multiplication and division are I_.'rfomled before addition
and subtraction, llAL/S incorporates tllese rules by defining a precedence for each operator,
as shown below:

Precedence of Operators

• * exponentiation first

multiplication

/ division

+ addition 1• _ -- subtraction last _.

• ¢ Note that multiplication is done bctbre division rather than at the same time as in some
languages,

(;'_n this precedence,theexpres.sa)n:

AX' + BX -- C

is evaluated correctly when written in HAL/S without parenthesis:

A X**2 + B X - C,

¢

1980004512-018

Arithmetic Expresstons 2-7

The equivalent form with parenthesis is:

((A(X**2)) X)) - C.

If strict left-to-fight evaluation was desired, this could only be indicated by parentheses, as
shown below:

((A X)**2 + B)X - C.

When an expression contains several operators of the same precedence, they are
evaluated fror, left to right for all operators except for exponentiatnon and division. These
are evaluated right to left. To see why this is true, consider the definitions below:

,,yZ = xIY Z)

A

C B

The first expression is written:

X**yosz.

If X-- 4, Y = 3,and Z = 2, this is:

4"'3*'2 -= 4"*(3"'2) = 49

if the natural sequence was overridden via (4"'3)*'2, 642 would be produced. Likewise,
A/B/C is naturally interpreted a_ A / (B/C), which is indeed equal to A(C/B).

Other operators of equal precedence are evaluated from left to right. Addition and
multiplication are commutative and associative, so the order does not matter except for pre-
cision analysis. Subtraction, however, is neither, and the order of evaluation does affect the
results. The HAL/S expression,

,_" , A-B-C

is interpreted as (A-B) -C.

The distinction between numbers and expressions is somewhat blurred in HAL/S. As
already stated, any expression that can be computed in advance (during compilation) can
be used wherever a number is required. Furthermore, a negative number (e.g., -I) is
actually an e:_presslon, containing the number I and the negation operator. The presence of

a blank between a minus slln and a literal is Irrele_nt. "-2A" is the product of A an_ -2,
but "A -2" is a subtraction even though there ts no space between the minm algn and the 2.

The comtruct, "A/-2" is illegal The minm sign is teen as an operator, and HALLS
never allows two operators in succession. "1_ division could be written u "A/(-2)" or
more tensibly u "-A]2".

!
¢r

a

.. o
- o

1980004512-019

2_1¢ R¢¢dm$, Writing. and Ar;thmetw

To sununat_Te precedence rules.

[IHAL/S has defined the precedence of each operator to correspond to the usual
mathematical conventions. BUT WllEN IN DOUBT, PARENTHFSIZE.

Arithmetic expressions may contain a variety of arithmetic types: Integers. scalars,

vectors, and matrices. If one variable of edch type is created as follows:

DI-CLARE S SCALAR:
DECLARE 1 INTEGER:

DECLARE V VECTOR:
DECLARE M MATRIX:

The following multtplications and assignments are legal:

S = V.V,

V = V'V:
V=VM:

M=VV;
M=MM:

V=VS:

They are. respectively: the dot 0nnerl product, the cross product, the vector matrix prod-
uct, the vector outer product, the matrix product, and the scaling of a vector and a matrix.
They produce results of the types" indicated uy the target variable (left hand side) of these

assignments. Thts is a necessity rather than a coincidence: Every expression has a datatype
and assignments can only be made between like types.

Iden#cal data types are not required. Since integers and scalars may be used inter-
changeably, the following combinations are also legal:

I = V.V:
j a VfvI;

°4 M=MI;

as are all eight comhinattons of integers and scalars alone. This, however, exhausts the
combinations that can be written with the four variables declared above. Not all operators
apply to every combination of datatypes. For instance, the addition of a vector to a matrix
is not permitted. In general, operations which are undefined in mathematics are illegal in
HALLS.

By default, vectors and matrices are of size 3 and 3x3. Section 2.3 explores other pos-
sibilities and defines the operators in more detail. At this point it suffices to say that

: wherever a variable of a given type is allowed in an expression, a parenthesized expression of
the same type is also allowed, e41,,

V = V*(IV S)M);
M - MtV V);

r

1980004512-020

.|rlthme't_ b zprcs¢;on_ 2-0

2 2.1 A (.'ompiled Example

With tile names (I, S. M, and V) u,_,d tn the previous section, the tyl_."of each _ariablt' is
apparent. Most apphcations would require a i,etter notation this Js provided by the com-
piler as shown below:

II OATAT_ pE4.;:
M pRp_t'A,:

M O£t'LA_E S $C:&LAR;
M Diet.IRE ! %r,TTEGER:
/1 DECLAP[V VECTOR;
n O[CLAPE M MATRIX;
[
M $:V . V;
E
M V=V'DV;
IE - - •
M V z VM;

[• . -

M M= VV;

M M -" MM;
[

M V : ',' $;
M CLOSE OATATYPES ;

11ns listing was automahcally produced lYe,n1 tile preceding ItAI./S statemL'nts by a
}IAL/S compder. No changes to the sourer, were made. The asterisk and ityphen overmarks
appear only in the hstmg; they are not coded by the programmer. The compiler indicates

the tYl_ of eacll variable in a compilation via the o_ermarks sllown below"

Integer and _'alar none

Vector

Matrix *

Character

Bit and lk_olean

Structure +
j°

4"
• Other differences between the source and the hstmg are.

I. The compiler controls spacin[_, indenting,and the arrangement of statement.,, on
lines in the hsting. The source t'onnal ts irrelevant.

2. Statements in the listing always appear in multi-hne fi_rmat, with raised exponents
and lowered sub cripts.

The _:ompiler marks each line of the listing with an E, M. or S to indicate exi_ment,
main and subscript lines. These character,,, as well as "C" for comments, appear out,,4de the

box in the examples. Some blank lines have been removed, and DFCLARF statements are
sometimes used in several exantples without being repeated. Any IIAL/S code which appears

in a box hke the one preceding is extracted from an actual listing: It has not been re-typed
and is therefon" free of any syntax errors.

b

1980004512-021

2.10 Rea3mg. Weffmg, and Arlthmet:c

The standardized listing format produced by HAL/S compilers isolates the reader of
a program from the style of its author. The same listing will result whether the source was
entered with minimum spacing on as few lines as possible, or was entered one token per line.
As a result, the listing format is a reliable source of information about a program's structure.
independent of individual programmers. Since the indenting in the listing is re-computed at
each compilation based at the flew control statements in the source, it is always up to date,

and changes to the source can be made without undue concern over spacing.

This completes the discussion of HAL/S source and listing formats. More information
about arithmetic data will be needed to proceed with the topic of arithmetic operations.

Exercises

2.2A Write IIAL/S exprt Aons equivalent to the following mathematical expressions.

a) ax+by+cz

b) a ��@�L�+
c e+f

c) 2n-I

2n_l

dr x3-3x2+3x-I

e) (x - I)3

f3 10 xy

g) (lOX) y

h) V.W V (V, W are vectors, ' • ' uneans dot product)

_" _ V.V
,qf

2.28 The left-hand column contains mathen,atical expressions that are mc_)rrectly coded in
HAL/S in the right-hand column. Find the erro_ and rewrite each expression
correctly.

a) mx+b MoX+B

b) 2(x+l) 2X+I

c) x -2'5n Xe°(-2.5N)

," d) c -$ C**-5

e) ac AC/BD
bd

,_ r I," :

¢

1980004512-022

D¢clarm_ Data 2-11

2.3 DECLARING DATA

The example below is a declare gr_ap which shows the three different forms of DE-
CLARE statements:

I1 0CCLARE3:
n PR'O_RAM;
11 DECLARE COU_TER ZHTEGER;
11 DECLARE VECTOR,
I'1 POSXTZON, VELOCZTY, TOaOUE;
H DECLARr hEW_CO.O_D9 PfATRZX,
PI SPEED SCALAR m
M N ZtJTEGER,

H uZt,'D.FORCE VECTOR;
. CLOSEotc RE];

a The first form is the simple DECLARE statement used prevmously. The next two forms are
for convenience in declaring many variables: the effect is the same as a number of simple
declare statements, The second form is a factored declare statement• It is distinguished by
the appearance of attributes before the variable names. The attributes apply to all of the
identifiers in the list. This example creates three 3-vectors.

The third form in DECLARE3 is a com_sund declare _tatement. This form is used
either to avoid re-typing the word DECLARE, or to show that a group of variables are re-
lated. This grouping capability can aid i,_ the attempt to doct,ment a program in the code as
well as in the comments.

Like all HAL/S statements, declarations may be entered in frec format. The example
above shows how the compiler arranges the tokens in the listing.

The simple declare statement consists of DECLARE, a variable name, and the attributes
of that variable. The factored declare statement consists of DI=CLARE, a set of attributes, a
comma, and a list of identifiers to which the attributes apply. The compound declare state-
ment consists of DECLARE and a list of identificr-attributes pairs, separated by commas.

•
a The three forms of the DECLARE state:t_ent are for convenience and documentation.

4 A variable of any type can be created using any form, and the form of declaration used does
not affect the way the data is allocated or referer,:ed.

The attrtbufes of an identifier consist of its data type, precision, dimensionality, initiali-

zation, lock group, and so on. The only attribute that is required in a declare statement is
the data type. Several other attributes are described in C'haptemathree and six. The arithme-
tic data types are described below.

The INTEGER type is used for counters, indexes, status indicators, and other applica-
tions where a variable's domain is limi,ed to the whole numbers. Integers generally occupy

less storage than scalars and can be operated on more efficiently.

SCALARs correspond to the real numbers. They are generally stored in floating point
" format although this is not a language requirement. In any cue, they can represent numbers

to "n" diltits of precision, where n is constant for a liven implementation, in a floating

point flnplementation, scalars may trade.off precision for a greater range by representing the
number _ m.fraction (mantissa) and an exponent (charactefl._tic).

1980004512-023

L"

2-12 ReadmlL Wrttang.and Ar,hmetlc

The VECTOR q, pc denotes a vector of scalar quantities, such as a position in Cartesian
coordinates. Vectors can he of any length from 2 to an implementation dependent limit.
The VECTOR keyword is followed by a parenthesized number to explicitly _pecify length:
VECTOR(2), for example, denotes a vector w,th two components. The VECTOR keyword
alone is an abbreviation of VECTOR(3). No distinction is made between row and column
vectors.

The MATRIX type de,ores a matrix of scalar quantities, such as a linear transformation

on wctors. The row and column lengths of matrices can vary between two and an imple-
mentation defined limit. The MATRIX keyword is followed by two numbers sel'arated
by a comma and enclosed in parentheses to explicitly specify row and column lengths;
MATRIX(4.5). for example, denotes a 4 x 5 matrix. The MATRIX keyword alone is an
abbreviation of MATRIX(3.3).

A VECTOR(n) quantity can he multiplied by a MATRIX(x,n) quantity yielding a
VECTOR(x) quantity. When x = n - 3, this can serve as a coordinate transformation since
each component of the resulting vector is equal to the dot product of the onginal vector
and one column of the matrix.

A MATRIX(x,y) quantity can be multiplied by a MATRIX(y,z) quantity yielding a
MATRIX(x.z) quantity. The anne. dimensions must match. The cxponentiation operator
,:an be used to invert or [ranspe.se___satrix or to generate the identity matrix. The crou
product (*) only applies _o 3-vecto._a. The dot product (.) applies only to vectors of equal
lengths. Addition. subtraction and assignment require identical dimensions.

Real numbers can azso be expressed by employing the FIXED data type. In this n_pre-
sentation, only the fractional component of the number it actually stored. The exponent
it specified in the declaration and remains constant for the lifetime of a variable. The
VECTORF and MATRIXF data types correspond to VECTOR and MATRIX, but contain
fixed componentJ instead of tcahmL These three data types (FIXED. VECTORF, and
MATRIXF) will be described in more detail in Chapter 14. and will therefore be ditcuued

in greater depth along with the other four arithmetic data types.

• , These definitions of the four arithmetic data types are consistent with standard mathe-
a matical conventions. Data type is the mc_t important attribute because it determines which

• _r operations may be performed on the variable.

Another important attribute of variables is initialization. The INITIAL attribute speci-
fies the value a variable will have when the proffam is firit loaded into computer memory.
Its form is shown below:

n ZNzTinL.AZ;_.g_'r_rl' z
n lllOIl_tl
n OfCL,LII_Xgi_ ZNlrlltfal!

p, n O|CLAII HAXoIPI/OSlCALAII|HITI4L(|4I(HI[fl DICL/I! r|ET.TO.NIL|I gClL&aCON_IT&h'TII/ |lIHl)!
n OlCLka| lie.TO.Ira CONSraNlrliI IllIII

_, H IIeLAal PblZ(Nlfl4|HIT|ALi|4,00i F||lr.Io.NIL|I I I|g.YO.Nlll!

i i _ i i

1980004512-024

DJ'vi,zrJ_¢ I)_t_ 2.13

The ('(INSTANt altrlbutc al,_o C,lU_'sinltnah/atk)n When an idvntili_.r ha,, Ih_: (.'ON-

AFANr atlr!l'ltll-, lea _.ahlc cannot I_.° chatll_ed AI|]' atl_'fltpt to as._ign intl.) It rL";llll,, in all

hi other reseed,,, INI FIAL and ('()NSFANI" art" the %lille. Hoth are followed by a I_aren-

Ihe._,.IIt'd salue to v,'hi_:h the idell|ll]er is initially .,,.'t. Var,ables of an],' tylx" Ilia],' _e..inllzah..c_

For zntelzer,i and _calar.'_ the talkie Illg_.l he a ntmlber As the example Indicates. th.t Includ¢,_

both arllhntdl,: htcr.lls and c_,presslotlA which L'an be' vvah,lated af cotnplle tlfn_'. SIne;' tilt'

_altz¢ ol'a ('ONSTAN l tannest bc chanted. ¢onlp;le "zinc ¢xpre.tsions may contam reference,

h) prevlousl], dc_.'lared intei&'_ and scalars with the ('ONSrANT attribute, _

[his example mhowm two new abbreviated forms S('ALAR z+ the d,tfauh data t],pc It

can be omitted, am in the fot_rth declaration of the example. Another omls,qon i+ in the

t'LOSr .{al¢'mc.t ll_e prol_ram name is optional, '.lthough t¢oou ream)ns for k+'Vl'lil_ it will

b¢ sccn whcn nested _-ode blocks ar_: =ntrt_luc_'d in ('hapter Seven.

A vector or nlatrl_ is miliah/cd in much the ..ume way as an Intewr or scalar [he

t c.,_'ntla] dd'l'erence is that a talue I_r each of the +v,.-lor or niatrrl, ,:oInponents is six'edged

in parenthe.ws t'olh)v.ml_ the word I,_! FIAL or ('(INSTANT, the valut:.,i arc" _paraled hi, _++
cOlnlna_ and arc' ._o111¢tlmcs referred to as the Intl;dl li_t

For CXalzlple, the tle¢laratlon

DE('LARi: VI:('T._ Vi-('TOR(5)INIIIALI._'.8.1..L; 7.O,t)),

defines a vector with the followmlt it_itla] value

'il
Path element of the vector is imtzallled to the cortespoltdm_ value in tile initial list+ I'he

first element reccivt, s the first value, the _%'onJ element the _cond value, etc.

+" P For a nlatrll, the elefncnt+ ai.+ lllltiallled to the t'alucs in the initial hint am l'ollow_ the

first r._., is inltlallled to the first values in the hst (tuin_ _.'ltou_h o| Iheln to fill one row),
then the second row is inltlah,,ed, and u_ on. [he declaration,

I)i'('LARI' ('(X)RI)MAF MA+FRIXI.U_ INIrlALII t) ,,_..,h I,I I, J.8+h).

defin_

it"

li

_ ,. +

1980004512-025

*II,,- jrr,_;_s;'_iicatetheorder in whichthemat_ _o::: ',rezuiltnedfrom the linear
serie_-_' v_lu_ _nthe intlial li..t,

The zmp_Jlt_nt_',tt t_ remember3"_,JfM _: ,'.' \ _,,,*mJationisIhal theorderinwhich
values_r¢_7_i_n_,_.. #' .,_,_,,am/n_ttby ced_, =, "., _uw-by-roworderalsoappliesto the
way matrix cumponen_,ire re,_l ;;]d pnntz': _,, • ,<E._,|.)andWRITE.statements,andto
arraysandtheMATRIX shapinl_I_n_on, _, _vi_lt_eshoumlater.Thisconventionis com-
monlytidiedrow_rJajororder.

Writinl an inilh,! list as m the above_'._n_l_l_scan be cumbersomeif the vectoror
matri._isb_'l_.HAL/S often some _h'_¢u|_.

I. If only one valueb sp_dflcdin the initializationattribute,all of the components
of the vector or matrix are initmli_edto that same value.For example:

DECLARE V VECTOR(3) INITIAL(tO).
M MATRIX(3.4) INITIAL(O);

I0 0 0

0 0

_. If severalsuccessivevaluesin the initial list_e identical,theprolnamm_rcantpecify
" a repeuJt,,./_'t._ andwhte the common¢ompouenl.va}uesjust on¢¢.Ther_l_ti-

tio_ factor is z number bzdklbJtllhow many limes Ibe value is to be repeated, and zt
is _eperotedfrom the value by a # symbol Utin8 repetition factors, the initiah_zatJon
attribute,

INJTLAL(I.$,1._,1 .$._.?.,_.?

mayhewrittenmoresuccinctlya._.

INrrlAL(3# I ..S.2#._.7)

which is _ti_ly equivalentto thr I .[1,_ _or_. The repetitionfactor my also
precedea i_rentbe_zed, ¢omma4_v._r_c_dlis! of values,in whicheasethe who_.

iS repeated. Repetition f_torJ may be nested to form a vthely of p@items.For
.," _ example,a 3x.1matrixmaybe i_tiaJizedto theklcntily matrix by the mJthdizalio_
, • attribute,

INITIAL(I ,_#(_t0, J))

3, If only _me componentsare to be initializedtbere Me two rays to _ the
affect.

a) A rq_ition faetur my bespecifiedwitko_l an_compenyir_ v_hu, in wh_
camethe specified number of _0mponents 8re paewd over md left unJaithdiz_;
or

b) the la_ item in the initial list maybean aMarlsk,whichindicatesIlutt lhe m-
maintn8compeeenUa_enm to beinlthdtz_d.

Fm example, the ztatemnt,

DECLARE A MATIIIX($J) INmtd. (1.2.3,4#,1t.6.3#,0_.');

c_catesthematdz:

1980004512-026

I_'xtcuteb_4 3tatementJ 2.1_

09 .09 x x _ j

where x india.arcsan uninitialized com_'_nent
"l

The symbob # and * are used in vector and mahlx initial lists as well u in other con-
structs. They can ,,_o be usedmthe initial list in Iha decla.-ationof an array o, sfructure and
in _haptnX[#mct/.n_. As described later, shapinj functions aPow the cr.ation -f ve_-torand
matrix quantities as in the followin| statement:

M - MA'FR|X!I,._=(3_O,I));

Another attribute which is usually omitted, but is iomet/mes useful is RANGE,

DECLARE I INTEGER RANGE (I to 100);
DECLARE V VECTOR (100) RANGE (-.999 to .999);

If I is always used as a sub,trip! for VECTOR V, it only takes on values from ! to 100.
In this example, the elemenls of V only assumevaJuesfrom -999 to .999 mr" .l_-e. Six_c-
ifyin| RANGE may or may not generate run lime checks,del_ndin| upon the implcmenla-
rio.. Some implementations may also useRANGE to pack var_bles and uve storage within
DENSE structure nodes.

All HAL/S variables must be d-fined before they are referenced. The DECLARE
statement is the most common meal,s of del'lnin| an kJentif_er, but ot_er pol_b_ti('s
such _ useof the TEMPORARY stalement will be introduced in later chapten. Y_ile there
are additional data types and attributes, all of the forms of the DECLARE statement have
been presented.

Exm'W_

2.)A Write decler_'statements oorrespondinI to the table below.

IDENTWIER TYPE INITIAL/CONSTANT

X DELTA SCAJJLR INITIALIZED TO I

Y_DELTA SCALAR INITIALIZED TO I
j"

, ," rIME_DELTA CONSTANT VALUE 1

DELAY_ FACTOR COHSTAHT VALUE .5

TEMPI SCALAR

TEMP2 SCALAR
t

TEMP3 SCALAR

COUNT INTEGER INII'IALIZEI_. "tO I

FOINT A VECTOR

ORIGIN CONSTANT VALUE (OJ).O)

TRAI_SFORId MATR|X INITIALIZED TO 0 I

0 0

k

1980004512-027

• . a

2.10 Reaa,ng. h'rltln_,and Irlthmt tl¢

2.4 EXECUTABLE STATEMENTS

:_ "1his chapter stresses the ltAL,'S source ,_,d hstmg formats am! the ar,tluuelic operators ._
g anti dat,J types |.nough executable stateme'_ts h.wc beet1 inlrod_lced to write simple pro-k

grams, the reformation about executable s[,i;cm,,nt,, whl_. ; wdl be :lSstlnled ill later chapters .:
appears bclog

: The a_slgIH_eelh" %leil¢.'lll¢,'lll COIIMSIs of one t_r _norc till'gel ',al'l;llqes. an = sign, and an e_,- _.

pression. To ,tore the value of all e'_prcssion Ilil_ several _,:,nables at once the m,dtll,h' as. ._
$11_li_tR'lll IS uscd, as ill.

I.J,K _0:
A. B, C = tA+B+CI/3;

I-.'ach target variable must be of the same ;ype as the expression on tile right. Conversions ,
between integer and scalar, and single and double precision are automatically performed,
however.

the operands to the liF4D statement are a parenthesi;ed channel number and a list of

variables, e.g.,

READ(5) ALPltA, BETA, GAMMA;

The channel number selects one of _everal external devices from which tile variables are to
be read. The data must be in a standard character format, so no additional control param-
eters need be given. Chapter eight describes other options in the READ statement.

The h'RIfE statement also includes an integer channel number. Its remaining operands

. may be erpresston of any type. In tile statement.

'_ WRIFE(_) M, V, M**_-I). M**(-I)V:

two matrix and two vector expressions appear. Matrices can be raised to any integral power

." ii I : minus one results in the "inverse" operation. [he out?t.t format is described in ('hapter;- Eight along with more details of the READ. READALI. WRITE aud FILE st'ltements.
• #" k

The PROGR..IM and ('LOSE statements have been described in this chapter. ; :

i Most of the re:naming ItAL/S stateme,ts alter the sequential flow of control, l'he_ in-
; elude statements for conthtional execuhon (Chapter 4), looping (Chapter 5i, and subrou- :

tines (Chapter 7). Error control (Chapter I1)_and real-time (Chapters I I and 12) statements

_, complete the set.

Chapter three describes additional forms of the arithmetic expression, l '

I _' t

5" ,

] 9800045] 2-028

#'_¢¢'lltablt" ,¥tatcmellt_ 2-1 "

End of Chapter Problems

2A rhe followntg program will compute tile roots of the polynondal 3X'+4X 10and
print them out:

ROOTS PRCXiRAM.
DI ('LAR! SCAI.AR.

ROOTI. ROOF2:
ROOTI = ! 4_q4"'2 4 3 (10))**0.5)/6:

ROOT2 = (4 (4**2 4 3 (10))**0.5)/t_,
WRIF!!((_i ROOTI, ROOT_',

('LOS! ROOTS:

Modify the program to read m three _'alar values A. B, and (" from channel 5, and
compute the roots of AX-*BX+C.

Note' Assume tile input values will yield real roots.

2B A bali is tossed straight outward frmn a height of I l0 feet with a horizontal velocity
of 4 ft"so-. Fach time it hits the ground, it rebounds to 35*; of its previous height.

Write a IIAL/S program to compute tile time until tile ball hits the ground for tile
third time, and how far it has tra_c1¢d horizontally in that interval.

The applicable equations of motion are,

I. For an object dropping front height H to the ground or bouncing from the

ground to height H, in time T,

I! = "_gT-

where g = 32 I'tlrsec"iS tile gravit:ltional a_.',:eleration.

2, IionTontal nlotlo)l is independent of vertical motion, so if D)s horizontal dis-
lane. traveled in time T at velocity V.

I) = VT

2(" An artificial satellite moves in a circular orbit of radlu._ 4000 miles, _'rite a ItAL S
._" # program to compute _',ow long it takes to make I revohltion anti write tile result on

. ¢ channel 6,

4w2 R3

Ren_emt',er, P = ,/_MASS OF FAR Fit) _ t,70 x 10
in C(;S f-nItS,

Say the MASS OF I:ARTH is: 5.083 x 1027 grams. One mile equals 10,0'-)344 ¢)11.

1980004512-029

2"18 Reading. h'rlt*ng ,_od ArHhm¢,!("

2D Let ax + by = e,

cx+dy= f,

be a syst*,m of 2 equations in 2 ,mknowns.

Write a tIAL/S program to _.ompute the solution of the system.

Tile inputs a. b. ¢. d. e. and f are avatlable on channel 5. and the solution x. y.
should be written on channel 6.

We are guaranteed that a solutton does exist.

Remember. Cramer's Rule states

ed- bf at'-ec
x = ad b-'-"_ Y = ad b"-""_

• 4

g

It

1980004512-030

+?

+, ++

Bullt.m Functions 3.1

3.0 MORE BASICS

This chapter describes additional aspects of the ari;hmettc expre¢_ion° including sub-
scripting and function invocation. One new non-executable statement is also presented, so
that only new data types, and ex'ecutable statements other than assignment are left to later
chapters.

3.1 BUILT-IN FUNCTIONS

in addition to the arithmetic operators. HAL/S provides a set of built-in functions.
When the name of one of these functions occurs in an expression, code is generated to in-
voke the corresponding library routine. Built-in function names are HAL/S keywords and
the run-time library routines are supplied with the compiler. Examples of several useful
btult-m functions can be given with the aid of a parallelogram:

D

A.
B

The size and shape of a parallelogram are uniquely detemlined by the lengths of two ad-
jacent redes and the angle between. These scalar quantities will be called LONG, SHORT and
ALPHA.

Taking the lower left comer as the origin of a coordinate system with an X axis ex-
tending along B, the following program computes the co_ rdinates of the comer points:

• ii M COgNfas:
H fI_OGPAH;

• 4 It OECLARE SCAkAItp
11 L(_* SHOItr, ALl=HAt
I1 DECLARE VECTOIlt at),
II AB, I_C, CO, CA;
II READiS) LO_'l_ SHORT+ ALPHA;
E
ti AB• O;
It °
I't I_ • VECTOIIILOI_I, Oil
S E

E
: H OA• VECTOllITII,IOI_TCOSIALPHAItSHOI_TSINIALPHAIII +

E - - -
II CO • $C 4* OAI
E - ° - -
iq tmETEI6I ABD I_* CO, DAI

' It CLOSE CORNERS;

, ,, ,,,,, t+ * -.+, =+-_,L-- +_

++_ xx .. +.,+_ ,

1980004512-031

3.2 More Baswg

The firstassignmentsetsboth components of the vectorAB to zero.An_ arithmetic

variablemay be assignedfrom the[it¢i'a]zero.Zero isthe onlysuchspecialcase:itmay be
considereda type[assliteral.

The secoJMas_tgm:icntillus,_ratesuseof theVECTOR shapingfunctmn.The expression

VECTORS t2l(LONG.0) representsa 2-v_:ter':,usecomponentshavethe valuesLONG
and z_'ru.

In the thirdassignment,the argumentsto the VECTOR functionare arithmeticex-

pressions.As a result,the firstcomponent of DA issetto theproductolthelengthofthe
shortsideand thecosineof theangleALPHA. The "Y" component of thisvectoriscom-

putedsimilarly,exceptthatthesinefimctionisused.

The fourthassignmentmerelyillustratesthe"'parallelogramrule"forvectoraddition.

• SIN and COS are algebraic built-in functions, listed in Appendix A. This category m-
clude_ SIN, COS, TAN and their inverses (e.g., ARCSIN) and the hyperbolic forms (e.g.,
SINH. ARCCOSH). Also included are LOG, EXP, and SQRT. For argument X, the latter
functions are equivalent to Loge (XL e X. andV_.

Each algebraic function returns a scalar value. The arguments may be any integer or
scaler expression. An algebraic function name with its parenthesized argument is itself a
scalar expression, Thus, functton invocattuns may be nested, as in:

ARCTANtSIN(X_/SQRT(I -SIN(X)**2))

A function's arguments are always enclosed in parenthesis: as usual, the evaluation of an
expression always starts _.t the inner-most parenthesis. In the expression above. "I-
SIN(X)**2" Is evaluated as "'1- ((SINtX))**2)": The function invocation may be viewed as
of higher precedence than exponentiation. Another interpretation of the same rule is that
the value passed to a function is comph'teO' specified within the parenthesis: operators cut-
side the parentheses apply to the value returned.

Before continuing to other classes of built-in functions, consider some general rules:
- f

I. No built-in function modifies any of its arguments.
4

2. A function name and its argument list together comprise an expression of some data
type.

3. A functign argument may be any expression of the specified data type.

4. All trigonometric functions receive and return an#es in radlam.

5. Invalid arguments (e.g., SQRT(-- I)) are indicateJ via runtime errors, as described in
Chapter Ten.

: The parallelogram exarr pie also used the VECTOR shaping function. Shaping functions

: perform conversions. One function per data type is provided: The arithmetic shaping func-
tions are VECTOR, MATRIX, INTEGER and SCALAR. The VECTOR and MATRIX func-

tions will accept any number of arguments, each of which may be of any arithmetic type.

it"

f

(

Ib

1980004512-032

Budtqn Fu_wtlolls 3.3

The secondassignmentstatementoftheexamplemightbe enteredas.

BE"= VECTORS2tLONG.0):

This statement contains the first subscript u_d so far. Whenever the VkCTOR function pro-
duces a vector of dimension other than three, the dimensionality of the result must be speci-

fied as a subscript to the function. HAL/S uses the dollar sign tSI and a parenthesized hst of

expressions to indicate a subscript: when the subscript is a single token, such as 2 m the ex- i
ample, no parentheses are needed.

The MATRIX shaping function may also be subscripted: a 3x2 matrix can be produced
from the numbers 1-6 by:

MATRIX$ (3.2) {I.2.3,4.5,b).

A three-by-three matrix can be produced without a subscript, as in:

MATRIX I1,3#0. 1.3#0,11.

The number of values iz_the argument list of a shaping function must match the sub-

script if one is supplied. Otherwtse, the number of values must be three (for _ vector) or
nine {for a matrix1. If supphed, the subscript must be either a single compile-time expression

indicating the length of a vector or two expres,_ion_, lndical_.:g a pair of matrix dimensions.

The product of these numbers is the number of componevts in the matrix. The dimensions
of any vector or matrix expression must be known at compile-time.

it is the total number of compolwnts in a shaping function argument list that must

match the subscript. For instance, given.

DECLARE M MATRIX.

V4 VFCTOR (4).

V2 VECTOR (2),
M22 MATRIX t2.2).

All of the following are legal (since each list has 9 components):
j t

• ¢ M " MATRIX (V4.M22.0): i
M = MATRIX (V4,0,V2,V2):
M = MATRIX$ (3.3) (M #V.,O),

Whenever a data attgregute appears in the argument list of a shaping function, it is "un-
raveled" in the natural sequence ti.e., the same order as in initial lists, row-major). The

VECTOR and MATRIX functions see their argument lists as a linear stream of _alars. If,
for example, X. Y and Z are three 3-vectors, then MATRIX{X,Y,Z) is a 3x3 matrix in
which the first row equals X, the second equals Y and the last contains the values from Z.

I

1980004512-033

J.4 More Ba$1cs

Shaping functions are the only class of built-ins which accept a variable length argument
list. Others have a fixed number of arguments, each of a specified Iata type. As stated
above, the functions m the "algebraic" class all take one scalar argument and return a scalar
result. However. one basic rule in HAL/S is that wherever a scalar is expected an integer may
be used. and vice-versa. In the assignment below.

DECLARE 1 INTEGER INITIAL (4):
I = TAN (I);

first 1 is converted to a scalar, then the tangent is taken and finally the result is rounded to
the nearest integer before assignment into I.

Rounding is defined in the usual way: INTEGER (3.5) = 4, INTEGER (-I.4) = I.

and INTEGER (.4999) = 0 As indicated, there are INTEGER and SCALAR shaping func-
tions analogous to the VECTOR and MATRIX functions. Since integer and scalar literals

s are written straightforwardly, and integer/scalar conversions are automatically performed,
the INTEGER and SCALAR functions are less often needed than VECTOR and MATRIX.

More applications of these functions will arise after arrays and non-arithmetic data types
have been introduced.

Rounding can also be performed by the ROUND function: this function allows explicnt
rounding without using an integer variable, as in:

DECLARE SCALAR. OLD, NFW;

WRITE{6) "CHANGE IS'. ROUND{100iNEW-OLD)/OLDL
"PER CENT':

Character strings are described in chapte "ight; character literals, such as 'per cent', are out-
put unchanged by the WRITE stateme OLD=3 and NEW=5, the statement above would
prt,_t:ce:

CHANGE IS 6_ PER CENT

The arithm_qic functions include ROUND. TRUNCATE, FLOOR. and CEILING. The

• 0 distinctions are shown in the following table:

X s .3 .5 -I.7 -I.3 1.6

ROUND (X) 0 I -2 - I 2

TRUNCATE (X) 0 0 - I - I I

FLOOR (X) 0 0 -2 -2 I

CEILING (X) I I -I -I 2

In words, TRUNCATE ignores the fraction, FLOOR always rounds down. and CEILING
always rounds up. These functions always return an integer result.

d'"

1980004512-034

Rul/rqs! I"uncllon$ 3..5

The arithmetic class also includes ABS (absoh,te value) and MUD (modulus). The re-

suit returned by these functions is of the same type as their argument(s). If the two argu-
ments to MUD are of different types, the result is scalar.

The remaining functions in this category, DIV, MIDVAL, ODD, REMAINDER, SIGN
and SIGNUM, are described in Appendix A. It should be noted here that the DIV function
causes an integer division. The remainder is discarded and the quotient is returned. No
rounding is performed. When integers appear in a quotient written with "/", they are con-
_erted to scalars prior to the division.

The only remaining category of functions to be discussedin this chapter is vector/matrix
bmit-m functions:

Name Argument Result Comments

ABVAL Vector Scalar Magnitude, length

UNIT Vector Vector Vector of length I in the
same direction.

V/ABVAL(V)

INVERSE nxn Matrix nxn Matrix Same as M**(-I)

TRANSPOSE nxm Matrix mxn Matrix Same asM**T

DET nxn Matrix Scalar Determinant

TRACE nxn Matrix Scalar Sum of diagonal elements
n

2; Mi, i
i= !

The program below illustrates some of the rower and convenience of HAL/$ vector/
matrix facilities. It first reads in four 3-vectors, X, Y, Z and V, and determines whether X. Y

," d and Z span 3-space. Then it constructs an orthonormal set from X, Y, and Z yielding vectors
• 4 AI, A2 and A3. Finally, these vecton are taken as the axes of a coordinate system, and V

(the feurUt input vector) is expressed in them.

in this program, the determinant is used to find out whether X. Y and Z are linearly
independent. If they are not, the second assignment statement (after Gram-Schmidt) may
result in a runtime error, since unit of the zero vector is undefined. Since the problem is
in 3-space, A3 can be computed by a trick: AI*A2 is orthogonal to both AI and A2, and
of the length I. The transformation of V in the last _ufignment is conveniently done with a
matrix; if, as in this program, the matrix is not saved, it may be mote efficient to uu the
equivalent form:

.

V ', VECTOR(V.AI,V.A2,V.A3);

1980004512-035

GA 11or_"Bd_t_

rh¢ remamlniz built-Ill ftixlcttons are much the same as those pr_,sentedhere'Each is
an expressionof some datatype.the argtlmetlt.sto eacharcofspecifiedItpcs.ma_ be any

express,on,and so [_rth.rhc_ _dl he discussedafterthe appropriateconceptsand data
t.xpcs ha_e been defined.

M C=T'+C";_mAL :

C SrT F_+"1 _.,Y A'+') Z A'+"I TI'['4 [',r':[_.+3£5
C V I+l tt

PI _E¢ L,',cE _,[CT?O,
_I \. I, _, V. /.1, [:. A$;
[o . -
M ¼_:tE16) [_[T(P_A'_IXIN, r+ ZI_,

C IF _rSUL? IS Z.r_O. _., v /._'."3Z O0 [_OT rc:_t
C PASIS ... E'_[CT (P_C_ [_EL_W.

E
f? #,_ : U+t_T(X|;
E
M ._._ : L";_T{_ - (r . J.ll All;
[
M _ : .11 * _2;
[....

M V = M_,T_IXI¢I. J,_, X_t V;
M CLO_[;

E_ercJ_ls

3.1A _'hat arc the types and values of the following expressions"

at ROUND tABVALO,'F.('TORS2tSINtO.SL COS(0.SDI)

t h) TRANSPOSE (MATRIX!I,3=2.3.3,4.$._,))
j"

C) MATRIX$ (2.3) (I,O.O,l.l,I) VECTORtl,2,3)

3.1B Write a HAL/S program to multtply the 3x3 matrix.

S

2

by itstransposeand writetheresulton channelb,

r

.,f

.... ++

1980004512-036

SubJcrlptJ 3._

3.1C Translatethese mathematicalexpressions into HAL/S

a) I+cos2x .i

b) tan I(Y/ (trigfunctionis;,rcta.gent(inversetangen,);

c) m(rz- zr)sin0-mrz0cos0

(usenameshke R DOT. Pltl. PHIDOT, etc.)

d) cos-Sf m/r-ma/n _ •

mE+

e) In(tan(X* 4))

(In = naturallogarithm:usePI for f.)

3.2 SUBSCRIirrs

Subscripts are used to operate on components of largerentities, if V is a vector. VSI
refers to the first component•

Any vector or matrix variable or constant may be' subscripted. This is done by ap-
pending a dollar sign ($) and a subscript expression. If the bubscriptexpression is a single
token, as in X$3. no parentheses or other punctuation is needed. Any expression may be
parenthesized: X$ (((3))) isequiwdent. Parentheses arerequiredif the subscript involvesany
operators: e.¢. V$(i+l).

Since matrix subscripts are written with a comma (and thus are not asinld¢ token), they
arealwaysparenthesized,asin:

MS(IJ) ,. M25(i.I) M3$(J,I)�M2$(1.2) M3S(J.2) +
M25(I,3) M35(J.3):

Subscfipting may be viewed as of higher precedence than the operators (+,-,',".etc.).
.,_ thThus, V$1 . is the squareof the I component. This precedence is natural,since subscript

computationsseldom involve exponent_ation,
•

• If a t,abscriptexpression is of scalar type i_ is rounded. The result must be in the range I
• d' to N, whereN is the declareddimension.Any inte_'r or scalarvaluedexpressionmay be

usedasasubscript.

A sinldecomponentof a vectorormatrix is a scalar,andmay beusedin any cow:xt
wherea scalarvariableisaUowed.

Whenanexponent¢ontablsa sul_cript,asin Ee*(V$ I), thesubscriptedvariableappears
in the sinfiJeline (so0_rce).t._lnaton the exponent fine of the output listing:

,f

1980004512-037

in all other cases, a subscript is indicated naturally by its position; in the listing rather than a
dollar Sill_. When a subscript (or exponent) is lowered (or raised) in the hstin|, the outer
parentheses (if any) are removed. In AS(BSC)**(N-I), all of the parentheses are removed:

E N-I

M A .
S B
S C

A position in 3-space can be represented by a 3-vector in a variety of ways. The program
below uses subscriptinj to convert Cartesian to polar ¢oordin,ltes. The results consist of
bearing (angle from X axis in horizontal plane), elevation (a.gle from x axis in vertical
plane), and total distance. Angles are in radians, distance is in the orilginal units.

M XvZ.TO POLU:
N F_C_'JIrAM:
n _(CLAJq_ P VECTOII;
!
N 111'4015) P;
I . °

H kll:Y|f6) JlWCTANIp / P), AIFCTANIP I AllVAL(P J, AavILIP)|i
S _ 1 $ ZaTl

n CLOS| XYZl'OoPOUUl;

This prol_am assumesthat the dh'ection of P is in the same hemisphere as the pecdtivex
axis. A more Ileneralsolution can be written using the ARCTAN2 function.

One new construct appeazJ in the example. P$(2 AT I) is equal to VEC'rOR$2
(P$ l,P$2): A 2-vector, consisting of the X and Y components of P. ABVAL(P$(2 AT 1)) is
the distance from the Orildn to a point in the horizontal plane directly beneath P.

"2 AT I" is one type of i_artition subscript, it can be used to specify a dice of avector
in termsof the partitionwidth and the number of the tint included component. The genend
form it number AT expreLfio_l. "Number" is any integer-scaJar compile-time expresazon,
greater than one and lem than the corresponding declared dimension. While partition widths

• tJ must be known •t compile-time, the starting component number may be any intqler or
, _r scahurexpression.

Any partJUon of • vector is a vector. A partition of lan|th N can be used in any con-
struct where a declared VECTOR(N) is aflowed.

PS(2 AT l) can also be written as PS(I TO 2). Here, the indices of the lint and last
components to be included are liven, insteadof the width andthe fuss component.

The dimension of P$(x TO y) is l*y-x. Since the dimemdonaUtyof every vector-matrix
exprmdon must be pre.determinabJe,botk x and y must be known; neither may be an ex-

• . premon involving• variable.

/

1980004512-038

Subscr_Ota3.9 i

Given V =. VECTOR(10,20.30.40.$0,60,70),
V$2 J 20,
V$(2 TO 4) a (20,30,40).
V$(3 AT 2) a (20.30,40),
V$(3 AT V$3/10) _' (30.40,50),

V$(4 TO #) i (40.50,60,70), and
V$(2 AT #-I) m (60,70).

The sharp character (_¢) which appears in the lag two partitions means *'the last".
V$(4 TO _) can be wad as "tht fourth through last components". 2 AT _-I is a way of
s_cifying the last two components. For the ?.vector above, any occurence ol # can be

_placed by 7,

A subscripted vector is either a scalar or a vector, depending on the type of sub, ripS. A
sui_l_riptcd matrix may I_ • scalar, • vector, or • matrix. If both subscriptsare simple (I J)
the remit is scabtt. If one is simple and the other • partition (I,I TO #), the remit is •
vector, if both ate partitions (2 ,AT 1, ! TO 2). the remit is • matrix. Output listing ovey-
marks indicate the remltant of type after mlncripting.

As usual, a matl_x that hasbeen mbscfipted down to type and dimension "X" can be
u_d in any context where a variable of type and dimension "X" is allowed.

The Ith row of a matrix M is MS(J, I TO #). This can also be written as MS(I,*). The

ith ¢otumn is M$_*,|). The asterisk means "all of • dimen_on". In every ra_e, it is equiva-
lent to "! TO 0%

Usinj this form of partition subscript, the elementary row operations rood in reducinl
matrices c_'_ be expteued compactly:

!

effWJ:
N PgQ_AH+
, DICLLtl n _11_w.
g ¢ scathe.
+[_t ¥|ctoe.
n ! l_lOtl,

.t" o n J INTIg_I[II;

• I ¢ _J_TIPLY&89N it • {l_S_glgeoiggl_YJ_Tt

t -
n Pl scn 1
• |.s |.,s

I[. .

n # ." ,gn :

Continued

1980004512-039

3.10 Afore Basics

C II×CMANg| ll_Jl I _ J:

n T_sM ;
5 I,.

| - .
M M #M ;

S |0m J,m

_q M • l'l[_P ;
S J,e

n c Losl[SOWS;

Before Icavin| the topic of subscriptin|, one caution is inorder. HALLS stores matrkes
m row-m_jor order. This mess that a row of matrix is stored in a contiguous block of
memory. The scalars in a column of a matrix do not occupy comecutive locations. This my

make operations on matnb columns less effictent than correspondi_.| ocentiom on rows,
A few restrictions on the u_ of matrix columns (ASSIGN parm_eters, the input FILE state-

ment and NAME vnbles) _ dz_u.'ribed later, Matrix columns are acceptable in811con-
structs pzesentcdso far,

This _ction has de_Lib,:_l cum_nen¢ suhacriptinll. Most of the material also applies to
array and structure _,_rip ,. but there are some differences. These top_,'s arc discussed in
chapters 6 and o. Component subs_ripting applies to vectors, tnatrices, character strings and
bit strings.

The term subscript expre_lon has been used to stress the fact that there are forms which
can occur only m subscripts. These are pa, tt_ons. The forms A TO B, A AT B. *, and #zN
are _¢d only in _abscript expressers,

An important point to remember from this _ection is that the set of contexts in which
e a v_iable may be used does not depend, on the presence of subscriptin|, but ,'_ the data-

" t type'htch remits after the suhacnpt has been applied.
,4

O

b

1980004512-040

aubscrJots 3-! !

Ext.rchtt_

3.2A For the follo_",gv¢ctors and matrices.

II ,4 I 2 5

V2 - 12 M22 = M35 = b 3 0 3 b

VI "/3 [13 5 " I 4 7
14

I

'-,) Give thc values of W l $(2), M22512.1), and M35512.3).

b) Give the values of V25q3 Ar 4), M22$l*.1). and M35S(2 TO 3, 4 AT 2).

¢) W#te the neeeutary de¢larattons and inltiall/atwn.% Io pioduee V|. V 2. M22. and
M_5.

|

3.2B Write a HAL/S prol_am Iha_ will compute Ihe dot prc_lucts of

r,4
L;J

with each of the columns of

t ; J
8

leave the resulls in a veclor. KLSUL_,' X, and write the Nsults on channel 6.

• itJ

,/

e

1980004512-041

3.12 More il_sws

" 3.2C The di;igams below represent the values of various vectors and matrices.

ii] [7] [,,] t:'V31 = V32 = 8 V33 = 12 M_" =
9 13 "" 23

M33 =' -4 -5 _6

--7 -8 ---_

What values will the lbllowing code print:

a
V41 = VECTOR$4(M22);
M22 = MATRIX$(2,2) (M335(2 AT 2. 2 AT 2));
WRITEiO) V41 ;
WRITE(O) M22;

M33 = MATRIX$(3.3)(V31,V32.V33);
WRITE(O) M33:
M22 ,= MATRIX$(2,2"s(V31,V3252);
WRITE(6) M22:

3,3 THE REPLACE STATEMENT

The REPLACE statement provides a capability similar to the macros of other languages.

The REPLACE statement contains an identifier (termed the replace name or macro name)
and a sequence of characters, termed tile macro text. The REPLACF. statement instructs
the compiler to substitute the macro text for every subsequent occurrenceof the macro

#" P Ilatll_?.

_4
The REPLACE statemott is not executable; it may only occur in the declare group,

The following represents one common use of REPLACE:

REPLACE PRINT BY "WRITE{6)":
REPLACE PUNCH BY "WRITEr7)";
REPLACE CARDS BY "5".

t

r

2

!

1980004512-042

The REPL.4CF St,atemtnt .t.l.¢

Any OCcltrre,lqe of PRIN !"subscqt/enl to thest stattnltnts will be convtrttd to WRITF(6)
[_y tile ¢ompder I'hc RI!PLACF stattnlent causes tile COlllptler to substitute tile rt,plact' Icvt

for lilt" replace or macro ndtth" wherever it occurs as a token In lilt" following source. USilltl
Iht replace IllaCros ttel'med abort.

RI AI)iCAR[)SI X: hecolnes RFAD(5) X;

PRINF X. Y. Z: becolntsWRITE(6) X. Y. Z:

and

PL,N('Ii X, Y; beconltsWRITEt?) X. Y'.

l'ht nl;icro is not txpanded in lilt"listinlt. ()nly tht macro nanlt appears. Each refertnce
to a nlat'ro is ;mtolnatically underhm'd, howe_,¢r: this infi_rnls tile reader that a replacclntnt

was dolIP Ill order to avoid a i,om,;tblc nlis-illttrl_rtlallOll.

I

[he leplacc text IS tnclostd in dotmle quoits ("). This ts tile only list of tile double-
quotc Clhlracttr m HAL/S. Tilt' rcplaqt tcxt nlay hP ant' scqu¢'nt'e of characlers not cent-
taming "' i'he replace nante or macro nanle iS an idt'tllltlt'Y anti follows tht t'onvenlioqs

described tn chapter two. Since RFPLA('F is a liAL/S statement, it ends with a stlni-coh-I.

Tilt"In;ltfO nalllt' is O/lIV recognized when it appt, af's us :l |liken. (;ivell,

RFPLACI' A BY "'1":

and

I)FCLARF ABLF SCALAR ('ONSFANr(AI,

only Olle rel'_l'.lCenlentis perfornltd. Tile other A's art part of ktywords and all identifier,

not complete tokens.

Rtplactnlacrosarc comnlonlyusedto paralneterizeI/O channels,asindicatedabove,
and tiledinltnsionsofvariables,:isill:

• st
,t

• ¢ RF.PLAt'F UNKNOWNS BY "6";
D|.CLARE AUGM[:N rl:D MA rR[X{UNKNOWNS,UNKNOWNS+[):

HAL/S doesnot allowvariablesto be usedforeitherchannelnumbers or dimtnsions.

but since REPLACEnltIIIS art done at conlpile-tilne, macro nalnts Inay he used wllere

numbers art' requited, provided tile replace text is an expte_,_ion computable at compile-
lime,

Tilt colnpilcr will process tile DFCLARE statement above as if DECLARE AUG-
MENTEi) MA'FRIX(o,6+I): had been coded.

d '

#
r

1980004512-043

.¢./4 Marc lia_acs

Replace text is ¢onunonly a single number, but may he aoy string, For example,

I_I-:PLACF DUMP BY "'WRITF(o) X,Y,Z,(;AMMA".

could he a Ilst't'ul abbreviation willie tle|lll_,lllg, 1"11('I1._(' I)f r('l)la(-(" molro_" h) ,Ibl,rcrlafc

Ii..ll .S kevword,_ ts $1;orl.¢lV (tl$('ollrJg_'_L tIAL/S was desit:llcd It) Itl;Ixiltlllt, readabthtv

ralher Ill'ill "'wrjte:lbihty", It Call be ver_. dll'fiCIlit to decq_her :1 Prt,_ram in which IIU,iCro5

arL" used in:H_propriately,]'fit, tithe sPenl a¢luall) typil_g a program Is gener:llly Iltsi_llll/-

cant Compared to the time sl'_'iit r¢-t,lillg it.

Tile progran) be|ow dhislrales ,a parameterized replace Slatenlent, Iiere the micro is

used to gencr'ite a table (t\)r seetiOll 3.4) without writing a loop,

M TAPLE:

M CTPtb,CE LC'._.:I_<!I_Y "LOG(_i,'LOGI_V'_"
M R.rPLACEr_'ITRllbll 9Y "_q]T[I(q H, _lelN-t),H/LOG_I |0)";
E
M I[HTRYIe),
E
M I._TRt! |_.l;
E
r4 [HTRYI |_);
£
_1 [:4tgl('t$ I :
E
H ENTR_I _mI ;
E
'I fell R_ (__,"I ;
F.

/'1 cLO_I[r:,r Lt ;

|11 this cXlllllple, X and N are nlilCl'O illgillliellls. Wherever N appear_ iii lh_' replace le%t 0|"

tile FN|'RY m:icro, tile actual I_arailielci i_. 12, eta'.) i_ ,_tlbslituted. Whenever tile para-

meter, X, of tile Log2 Iil'.lcro o¢l.-Iir_ in Ih¢ IcXl. lilt' vahlt' I() IS slibstiluled.

Tilt' I_NII_Y nlacro gelierlltes tin enlire. ,_l,itenienl. Note thai no final selni-_'oipn w,'l_

placed inshle the cntling quote: l'hls prothi¢¢s a belier Iisling since ii Seliii_,olon inl.,l

a" ii tt, rnlhlilte eilc'll rl'Jl'rl'/tl'l" to the nial:rtl, lriililering ancw listing lille.

,it

l'he nallles of prr¥ioully defhled nlacrl_s nllly he used i.i the rupl:ice lest, ill ill LiltS2

abovc. File compiler will t:onlinu{ Io illake ,,iubslillllioIll until no macro nalllei reililiill,

bel'orf any other prt_:essing. An inlinile expansion I'_lu]t$ if a inlll'ro'$ OWfl Ilalllr is used

ill its repla_ text. Slalenlents like.

REPLAL'F X BY "X+I":

not only ciiise error hieS,sages, but nlay ilborl Ihe r('lt of the ¢ompihilhJn.

The above is a brief inlrodu¢lion Io Ihe HAL'S nlacro ¢ap_bilily. AddithmM I_illlir_,s

llld 111oredetail cllil he I'Olllld ill Ihe Language Specific'orion,

L

1980004512-044

The I'rectsmn A ttrtbutes 3-15

3.4 THE PRECISION ATTRIBUTES

Most of the matenal so far has been concerned with the arithmetic expression. Rules
for fonnmg exFressions from identifiers, operators, hterals, and keywords have been pre-
sented. Every expressmn has a data type: the type is determined by the types of the idenn-
tiers and functions used, the operators which combine them. and the order of evaluation.

Each expression also has a prectsion.

Arithmetic ident'fiers and expressions are of either SINGLE or DOUBLE precision.
All previous examples have been single precision. Double precision variables represent
value3 to more significant digits than single precision variables.

Any arithmetic operation involving a double precision operand is done in double pre-

cision. The result is also of double precision. Thus, the usual method for specifying that a

computation should be carried out to more digits is by declaring some or all of the variables
to be double precision.

The comptltation in the write statement below is performed in double precision.

M P)._ALLAX :
f't FPC_a_'I ;
I't OECL_*=E E,_RTH OPSIT CONSTANTI 92.9E6 1;
1"1 O;CLA_£ VECTOI_(_.),

M gF_Ir_G R£_DIN_, FALL REAOING;
M OECtA,gE OEVIATIO'; SCALAR [_OL,_LE;
E =

1,1 CEAO(,S) SPRIt;C, PEAOING, FALL_I;EAOINO;
E

M 0E%.TATION : _6VAL(_RDIG RE_OIN_ - tALL READINg! / Z;
M _RITE(_'! '0ISTAHCE= ' , EARIH O_BIT / TA/ilOEV/ATICNt_ 'MILES* ;
M CLOSE PAR,IL LAX ;

This program could be used to compute the distance to a star based on its apparent
change of position as the earth moves 180° in its orbit (186 million miles). The input data is
a p_ir of angles in radians representing the star's direction ir the Fall, and another set taken
in the Spring• The diagram below illustrates the algorithm in 2-space:

,t"

• , S1 S2
II

I_ I !_1011 II.t_IQIi_ I

.,' .. .,." ""P
,* % ijo* _

o* I g°l % ,

•""" "..d / .,

.. fa spring ,

, I

P

J

1980004512-045

3.16 More_stcJ

Double precision is used in the example because a very large numberis computed from
a very small numberusing the tangent function near a zero• The double precision tangent
routine is invoked, and the division of 93 million by the result is performedin double pre-
cision. Thus, the expression. "EARTH_ORBIT/TAN(DEVIATION)" is of type double "_
precision scalar.Tile WRITEstatement outputs al; the digits of its operands. _.

The arithmetic in the preceding assignment statement is done in single precision• '_
Whether or not this is adequate depends on the provision of the measurements and the
number of digits in a SCALAR SINGLE. One radian is approximately 2 x 105 arc-seconds. _"

If :he physical measurements are accurate to the nearest half second, then six decimal
digits of precision would be enough.* The value of the expr¢ssion is converted to double _'
precision before it is stored into deviation. -_

The number of digits in the representation of a scalar (of either precision) is imple-
mentation-dependent. These numbers are specified in the User's Guide. A rule of thumb _
for _alars is one decimal digit for every 3 I/3 bits of mantissa.

if the measurements have more significant digits than can be contained in a single pre-
cision scalar, the whole programcould be done in double precision:

DECLARE VECTOR(2) DOUBLE,S,F;
READ(5) S,F;
WRITE(6) EARTII_ORB1T/TAN(ABVAL(S-F)/2)_

This version is written less mnemonically, and the assignment and write statements are
combined. These simplifications have no effect on precision. :-

All of the computations in this form are done in double precision. This is triggered
entirely by the DOUBLE keywotd in the declaration of S and F. Note that there is only
one name each for the tangent and absolute value functions, whether single or double
precision. The double precision form of a built-in function is automatically invoked when
one or more arguments are of double precision. The value returned by a built-In function

is of the same precision as Its argument. Since ABVAL(S-F)/2 is a double precision ex- _
pression, the double precisionversion of TAN is selected.

Double precision expressions are formed under exactly the same rides given for single
precision. No restrictions apply to double precision variables that do not apply to single
precision variables of the same type. Precision is normally specified in declarations rather
than expressions. _

*Thisprod'amaim assumesthatthe radiusof theearth'sorbitis exactly92.9E6miles,andthattheread.
lnp aremadeatexactlythesametimeof day,

2"

,{

q9800045 q2-046

The Prectslon Attrtbutes 3.17

The variables i. S. V, and M used m previous sections could have been declared as:

DECLARF I INTEGER DOUBLE,
S S(_LAR DOUBLE,
V VECTOR DOUBLE,
M MATRIX DOUBLE:

This would not necessitate any changes to the expressions used.

The DOUBLE attribute follows the data type in an attribute hst. It may be either

before or after the other minor attributes such as initialization, LOCK. and AUTOMATIC; ,,
e.g..

DECLARE COVAR MATRIX(5,5) INITIAL(0) DOUBLE;

DECLARE V VECTOR(5) DOUBLE INITIAL(5#1);

Precision applies to all four arithmetic types. Either SINGLE or DOUBLE may be

a specified in the attribute hst of any integer, scalar, vector, or matrix. Since single precision
is the default, it need not be specified in declarations.

Double precision vectors and matrices are composed of double precision scalars. All
of the vector-matrix operators and functions have both single and double precision imple-

mentations. As before, double precision routines are selected when either operand is
double, or when any built-in function argument is double.

Since integers, double integers, single scalars and double scalars may be freely mixed

and substituted for each other, these four combinations typically correspond to differept
sets of computer registers or machine instructions. Conversions of integer to scalar and
single to double are made automatically when operand types are incompatible. Since in-
teger and single precision operations are generally more efficient, data is left in the simpler
forms whenever possible.

The type and precision of an expression are determined solely from the expression

itself. Neither attribute depends on the context in which the expression is u_ed. The pre-
cision of the expression in an assignment statement is not determined b_, the precision

• _ of the target variable on the left hand side. In the following, "10000 N" is a single pre-
cision expression, since neither operand of the multiplication is double:

DECLARE D SCALAR DOUBLE;
DECLARE N INTEGER INITIAL(20);
D = I0000 N;

The right-hand side is of type single precision integer. It will be converted to scalar double

before assignment to D, but the multiplication is done in single integer mode.

lb

1980004512-047

3-18 ?,loreBasw.s

Table I shows the rangeof mtegerswithvariousword sizes.Ifthecodeabove isex-

ecutedon a computer wnich representssingleintegersin 16 bits.the wrong answerwill
be produced.The codecan be correctedby addingan explicitprecisionspecifier:

D = I0000 NS((_DOUBLE):

the forms"_aSINGLE" and ,'('aDOUBLE" may be attachedassubscriptsto any arith-

meticvariable.In the example above."N$(__DOUBLE)" isof typeintegerdouble.Thus,
themultiplicationisdone indoubleprecisionand no accuracyislost.

The precisionspecifiermay alsobeattachedtoshapingfunctions,asin:

DECLARE VECTOR, VI, V2, V3:'
DECLARE M MATRIX DOUBLE;

M = "dATRIX$(_ DOUBLE.3.3)(VI.V2,V3);

The prec;s_onspecifierprecedesany subscriptsina shapingfunction.

Table I

Range of
of Bits Integer # of Digits

8 128 2.4082393
12 2048 3.6123590
16 32768 4.8164796
18 131072 5.4185390
24 8388608 7.2247190
32 214748360 9.6329593
37 3435973800 10.837079

Empirically, double precision algebraic routines give 0citer performance near zeros
and singulartties than their singie precision counterparts. These routines are generally
implemented vta polynomials, prefaced with code to identify the quadrant or other range

s" of the argument. The tangent routine, for an argument 0 < X < _/2, might use a poly-
nomial of the form

Tan x = A + Bx + CX 2 + DX 3 + EM4 + FX $

If the value DEVIATION in the parallax example has the value IE-6 then the tangent
will be:

A + BxlO -'6 + Cx|O -12 + DxlO -18 + ExlO -24 + FxlO -30.

The operation X ,, X + i0 -N X, where n is _'eater than the number of digits contained in
,° a scalar, does not change X.

1980004512-048

¢

When two floating point numbers are added, the exponents are first equahzed by
shifting one of the mantissas. It is this shifting that causes the loss of sigmficant digits. When '_
two Iloatmg po,nt numbers are multtphed, no shifting ts required. The same sttuatton holds ¢

in tixed point, though any shifts required for addition and subtraction must be explicitly !
coded.

[

In tile parallax example, double precision allows the addition of more terms of the poly- _ -"
nomial used to approxnnate the tangent funcuon. Double precision generally is needed "i
when numbers of greatly different magnitudes are added or subtracted, and when a large

number of output digits are needed. The latter case Js less common, since neither humans ' :;

nor digital-analog converters can use more than a few digits directly. _ _:

The arithmetic expression is summarized in the next section. All of the statements made

apply equally to single precision, double precision, and mixed. Operations which reference
one or more double precision values are done in double precision. More digits are obtained.
at greater expense in memory and execution time. Some implementations have fixed point

scalars', the Language Spec_ficatton describes the exphc_t scaling [shifting) operators which
are used in tllese implementations. More details can be found in the appropriate User's
Manual. '-

3.5 SUMMARY OF THE ARITHMET[C EXPRESSION

An arithmetic expression has one of the following forms:

I. An ldetltifler. This may be an integer, scalar, vector, or matrix variable or constant
of either precision.

2. A literal. No sub-classes of numeric literals are defined.

3. A subscripted identifier. Partition and simple subscripts are allowed, as well as ex- :"
phcit precision spc,ifiers and scahng operators.

, 4. A]unction invocation. Both built-in an,i user funchons may have zero or more -_
arguments, which are themselves arithmetic expressions. Shaping functions may also
have subscripts.

5. A further evpression !,r,'fl.vcd by a minus sign. Any arith,netlc type may be negated.

An expression preceeded by "+" is allowed, but functionless.
&

b. A further expressiem fn parentheses. The parentheses override precedence rides, ande4'
'allow scaling operators and precision specifiers to be attached to expressions.

7. Two expressions separated by an operator. Only certain combinations of operand
types are allowed for each operator.

The list above is a recursive definition of the syntax of the arithinetic expression.

Expressions may he nested via l'omls three through seven.

The compiler evaluates an expression outward from the most deeply-nested parentheses.

! Within a set of parentheses, the colnpder lint evaluates any subscripts. Operators are applied
: to the components selected by the subscripting.

] 9800045] 2-049

3-20 More Basws

The table below shows tile arithmetic operators m the order in whtch they are evaluated

when not ovemdden by parentheses:

Operators in DecreasingPrecedence

** Exponentiation. Apphes to integers and scalars For matrices.

the exponent must be either an integer or the character "T".
Raising a matrix to the "T" power a[wa,'s indicates trans-

position of rows and columns. Integer powers apply only to
square matrices. If I is negative. M**(I) is equal to INVERSE
tM)**(-I).

multiplicatton Indicated by a blank. Multnplication is allowed between any
two types, provide,i the "'inner dimensions" match. Resulting
type given by outer dimensions.

* ('ross product. Applies only to 3-vectors. The result is a
3-vector, given by :

Result=VectortX2Y 3-X3Y2,X3YI XIY3.XIY 2 X2YIL

The resulting vector is orthogonal to X and Y. and ot magni-
tude (ABVALtX)ABVALiY)SINt0)L where 0 = the angle
between X and Y.

Dot, scalar, or inner product. Applies to vectors of equal
dimension. The result Is a scalar equal to the sum of the
products of corresponding components. It also equals the
product of the magnitudes of the vectors and cosine of the
angle between.

/ Division. The left operand may be integer, scalar, vector, or
matrix. The right must be mteger or scalar. The result has the

same dimension as the left operand, but is never integer.

• • +,-- Addition and Subtraction. If one operand is scalar, the
other may be either integer or scalar. Otherwise, the two
operands must be of the same type and dimension,

-- Negation. Applies to any data type. The result is of the same
type

Operators of equal precedence are evaluated left to right, except for exponentiation and
division which are evaluated right to left.

Before non-arithmetic expre_ons are introduced, a number of statements which alter
the sequential flow of control will be presented in chapters four and five.

1980004512-050

Summarr o! the Arithmetic Expression 3.21

Exercises

3.5A ItAL/S hasseveninfix operators:

+, -, < >. *,../. **

Which infix operators are legal for the following pairs of data types? The characters
< > represent a blank, meaning multiplication.

Of what datatype is the result for each legal operation?

i) SCALAR SCALAR

u) SCALAR INTECER

iii) INTEGER SCALAR

iv) INTEGER INTEGER

v) VECTOR VECTOR

vi) VECTOR MATRIX

vii) VECTOR INTEGER/SCALAR

viii) INTEGER/SCALAR VECTOR

ix) MATRIX MATRIX

x) MATRIX INTEGER/SCALAR

End Of Chapter Problems

3A Writv a HAL/S program tL,,t will read 2 vcctm_ from channel 5 and write the angle
between them on cha:me! 6.

aemember. Vi.V2= [Vii [V2I cosO

where 0 is angle between V I and V,.

J" _ 3B There are occasions when it is nece_tsary or advantageous to shift one's frame of ref-
• ¢ erence. These occasions call for a translation and/or rotation of the coordinate sys-

tem. SJy the old axis (x, y) is shifted to the new axis (x', y') in the following

manner; the x, y origin is shifted to (x o, yo) and rotated by ctdegreesu shown:

gt,-

._.
¢

_e i . ,g . . 6.

1980004512-051

"__ Alore Bastes

Ixo. Yo) _,
\

X

The resultmt,translationequatmnsare'

= x" = (x xo) cosa+ (y - yo) sina

y' = -(x - xo) sma + (y - yo) cosa ,

Writea ltAL/S programthat will translate2 coordinatesm tile x, y systemto new
coordinatesmx', y" wherexo = 54000. Yo= 118000 a = 17°. Thetwo coordinates
areavailableon channel$ =qdsh_;ut"hewrittenonchannel6.

Remember that HAL/S trigonometric built-insrequire angles in radJans.

3C Write the nght half of the t'ollowing 4 assignments for the partttions in matrix M
below

a) V4 = where _,., ,sa4vector

b) M22 = M22 isa 2x2 matrix

¢) M]4 = M34 isa 3x4 matrix

d) VIO = VI0isa IOvector

a
12345678910,4

I b

4 c

6 XX

7 XX
g d

+ xxxxxxxx
I0

8"

+

d

w

1980004512-052

I
il,, .TIIFN . ._.I ._ 4-1

4.0 CONDITIONAL EXECUTION

The statements in a program are executed sequentially, except when a flow control
statement is executed. The flow control statements can be loosely catelorized by their u_¢
for decisions, loops, and subroutines. These groups are described in chapters four. five, and
seven.

Althoulgh the HAL/S assignmentstatement is quite flextbl¢, only a limited set of pro-
_ams can be written without flow control statements. The ability of digital computers to 0
_aluate conditions and select alternatives is the essenceof their power.

i
4.1 IF...THEN...ELSE

A choice between two ahematives can be written with the HAL/S IF statement:

IF A - 0 THEN WRITE(6) 'ZERO'; o
ELSE WRITE(6) A;

in this instance, the two allematives are executable statements and the test is a comparison,
The first alternative is called the then clause, the secondthe else clause

IF is a COml_und stat¢'ment; Le. it is composed of further statements. The concept of
a statement containin¢ "sub4tatements '° is common in HAL/S: It will be useful to define
the entire sequence, "IF comparuon THEN statement ELSE statement" as a sinlgle state-
ment, thereby:

Unless the then or else clauses ,'ontain further flow vontrol statetnentJ 'j, control t_sses

to the next sequentbJl statement after an IF stutement.

There are two equi_'alent traphicai repreJentattons o[the IF statement

Stendar_ _w Structured Irl0w

• I [z

m

*A_lenFv.frmntlwwt EXIT.REPEAT.IUETURNiuMGOTO.

1980004512-053

['he lorm on the left illustrates the rule ahovc by the explicit joining of two arrows _t
the bottom. ['he system dlustraeed on the n_.ht Jsappropriate to _tructured programmint_
languases in which complex declsnc,ns are repre.,,enfedthrough nestlnlt of compolmd state-
ments, all of which have one path m and one path out All of the HAL'S flow control
statements (except t;O TO) can be represcn:ed m structured flowcharts.

The d:rectluns of the lines m a stnJctured fi_Jwchartare ,nphed Vertical lines arc always
traversed top to bottom. Horizontal lines are ._lways followed left to right and haole. Lines ?
may intersect only at the points of IF and DO CASE statements. There is no provision for
overriding the natural direction.

Ihe above ruloobvmusly limittheclassofprolP'amsthalcan be represented.However.
the forms thal have been ruled c:ut have b,.'en shown to he symptomatic of programs thai

are difficult to read and maintain. Any algorithm which can be expres._4ed by a standard
flowchart (where _quare boxes contain HAl/S ass|$nments) Is equivalent to some llAL/S
program, without GO TO statements, which can be represented by a structured flowchart.

rhe IF statement can select an altelnatlve basedon the results)f a boolean combination
of _veral comparl,,ons. A companson conmls of two expreuions separ_!ed b_,'_ rel_:_aa,
ope.ralor, asin.

IF A = O THEN . .

IF N > 12 IHEN . .

IF B**2 < 4 A C THEN . . .

The complete list of relational ol_rators is.

= t'_d_'l _'quahty

-I = not exactly equal
NOT =

> Iffeater than

> = greater than or equal

< less than

" t < • Icu than or equal

• • 7 > not grealer lh=n Isame as <=)
NOT >

"7< not L,:u than (same _ _-,)
NOT <

Since the character "'-r" does nol have a standard graphic a_rou all systems, the keyword
"NOT '° may I_ freely subs|llu|ed for II.

All of the operators above may be used between any cumbinalion of inlel_r of _calar
Smlde or double expreuiom. When neceuary, inlellers are automatically converted to
scalars,and sinl_e precision is ra_'d to double before IRe come _ison.

, r'

1980004512-054

\

J

IF, , . THEN. . .ELSE 4",)

}iow_er, only the tint two relational oper,_to_ (,. and -')-_ ra_ be used between vectors. 4

and matricn. Two vecton or matrices Jaay be compared for _,qi_;l_y _r inequality if the
ha_e the same dimension. They age equal if eac,5 pair of com_p_ ,t_ it exactly equal, and

1equal ot;lerwite.

It is not pnegally u_ful to compare sc._tan, ve_ , or n,,_Irices for equality. In the
statement,

IF A - B THEN WRITE(6) 'PURF_ COINCIDENCE';

where A and B age _:alaq, the WRITE statement it exe_'uted only if ¢_,¢r). digit in A it the

e a m B. Due to the t'mite precision of galan and roundoff problems, if B had been _t

B • A!3:

B • B * 2 A/3; /'1/3 A + 2/3 A*/

B would probably not be equal to A. Scalan can be tested for approximate equality as in:

IF ABS(A-B) _ EI_ILON 3H_:N . . .

where EPSILON is "'mfl_iently amall '°. e@,

DECLARE EI_ILON CJNSTANT(.000001);

Og

EPSILON • tA+B)/16**(.;5 MANTISSA LENGTH);

ego

TI_ key_ogda AND. OR. _ NOT (or their equivalentt. &. 1. and q) may be _d to
comb_ meg_ compam_o¢_ in ofl_ IF statement. Pagenth_ are Ilgn_rally required around
each ld_l_e ,:ompstisotl. For example,

IJ IF'gA>O) AND (A<I00) THEN . . .
_" IF NOTe(A<"0) OR (A>"IO0)} THEN . . .

,4r

Both of tlx_ forms will rrmlt i_ mc exec_tk)n of mr then ¢I_ if (_nd only if)

0 < A < tO0. Th_ fhrit test ch_:ks whetlteg A is in the I_Ven nmlll¢.The ".,ond test is
equtv_nt knee it cbecb wh_th_r A d not outtklt the ml_. "1_ _ of .._y complwiton
or comb_u_ lhen_f can 1_ _vened _ _he NOT keyword _ d_own in tl_e _econd
test. This use nt NOT ee¢_ _ p_renthetiz_ _rl_ent,

1980004512-055

Suppose a number nsdwided i_lto one of three ranges, as shown:

IF N '< 10 THEN R -- 1:
I:ISE IF N < 20 THEN R = 2;

ELSE R = 3:

Here. the else clause of an IF st,ltement is an entire IF. .THEN...ELSE group, it may
he dnagrammed as follo.vs

" IF N<IO _1 R=I I

• F N<20 y EL_SE_ R'2R=3]

The THEN clause of an IF...THEN..ELSE group may not be an IF statement.*

A lbur way branch can be written wnth a Dr'...END g,roup, as described in the next sec-
tion. There are no restrictions to the TllEN clause of an IF statement if no ELSE clause

is present.

The IF statement allows the selection of one or two alternati_e_ based on the evaluation

of a comparison. When no action is reqmred unless the test succeeds, the else clause may be

o:nltted entireJy:

IF A > 0 TIIEN B = SQRT(A);

This statement is functionally equivalent to:

,_" IF A NOT > 0 THEN;

, , ELSE B = SQRT(A):

Here the then clause is just a semit, olon, which is the HAL/S equivalent of a no-op or null
statement.

a IF...THEN. •ELSE may be viewed as a single statement. The then and else clauses
-_" each contain a further single statement. Any executable statement is allowed in the else

_ clause: the then clause may contain any executable statement except a further IF...THEN
• . .ELSE. The else clause may also be omitted entirely.

* fhia ruleavoida the "danglingelse" problemcommon to ALGOL-likelanguages.

\lc_ '

1980004512-056

IF . . TIIEN. . .l"l.Sb 4.5 _:

Exercises

4.1A What Is wrong v,lth the |'ollowtng HAL/S condittonal qatements (in which all van-
ables are of SCALAR type_:

al IF A < B < (" [lIEN MII)I)L[_ = B;

b) II" B < C THEN
IF C < D TttEN B = D.
ELSF B = C:

ELSE C = B. _ :

c_ ll" RADIUS > 0 & NOT RADIUS > I TttEN
WRI'I'E((_ PI RADIUS**2. "_

4.1B Where pusslhh,, convert the_e standard flowcharts to structured l]owchart,_, without
duphcal.lg or ehmmatmg boxes. Indicate why the others cannot be converted.

¢

a)

TRUE

a "•• If _ _E "',

I '
I

1980004512-057

4"fi ('i-fl_]l_e)rfij/_._t'*UlIf)P!

h)

TL_UE I_ALSE

FALSE

TRU] FALSE

c)

I -

1980004512-058

I1< . , TIIE,V I'l 3"/" 4-"

d)

TRUE FALSE

FALSE

4.1(" Tell whether fl_e following conditions are satisfied, no! satisfied, or illetml. Assume
that:

A, B. C. D are scalars

• _ V. S are 3-veclors
J A = 7.0 C = 12.0
• _ B = 4.0 D _ 3.2

%7 = (2 4 6) S = _3 4 12)

,/" a) A < B

'I b) C > _NOT B)

c) tA 7 = B) & tC > = D)

e__<_
f) (V.%7< C) & (NOT(V,S < C))

o¢"

r

_4

1980004512-059

%

4.8 Condtnondl lfrecunon
4

4.1D Write the following descriptions in relat,onal expressions: _

g) A is greater than B but le_s than C.

h) The vector V is not equal to the recto," S-and C not less than D unless D is
equal to 4.

4.1E Write HALLS code implementing tl, is flowchart:

IF THEN SQ = 0

W< L

IF THEN. SQ 0

a W >L iSQ l

mw

AREA = WL

l oll.>0 : 'NO SQUARE'

i # ELSE [IF N THEI_ WRITE(6) , I

[AREA ;-

1980004512-060

7"h,_D(L /'ND G,",_,p 4-v

42 THE DO. , .ENDGROUP

h ,_erlcs o|" eXL'CLItAbIL+ _datelll0nts ll)_lv be COlltl++lli_d it+llO a d(.+ i_i'o Ip, '_+hlch 11'l+lythen

tee used all)'_itvre ;.i Slltgl+ _13tem_.'nt is reql+llred, e ++. in tire then clau,¢.

Th,.', allows, for example, the following +,+dim;+ of a tour may deczsJon.

II" X < 0 IIlEN M = O.

ELSt IX).

IF x << 100 FItEN DO,

]F X > l0 |HEN M = 2.

t-L+SI: M = l:

I-ND.

FL, SE M = 3.

a LND,

l'hls example. _.hmch sets M to the order of nlag;lltl.;d¢ of X, Call be diagrammed'

EL__s] \ THENI t.eNI

Since tt is only one statement, the entzre sequence above could be t'urthorn0sted m I!" or

other COmpOl.lnd statements.

• • A do group ¢onsL,,ts el" a DO statement, any nttnlber of o,¢cutable statements* and an

FND statement: e.g.

DO:

l=l:

It+.Nl):

4t"

"Or TEMPORARY statements.

1980004512-061

4.1f9 (',_l,lllllmdl _¢('Z,tlL.t

"|h_"¢_llnpl¢ b¢io_ ¢omp).,t¢_ pi [_) Jxt Itt¢t't_,.'lentbLit tllLtstratlv¢ Jl_ot'|thtl'a.

||ere it call he seelt that loops are sho_n wltll tile $,ltlle sl_aped _ymbol as IF statenlents.

., tlAL S Ilas several typrs of loops, all of _'lucil use tile DO and END keywords. Tile stmpiest
t.vpe is sitov,'n _L_ove,-_nd in tile t'ollowln$ compiled listinl_

I'
r

"10800045"12-062

The D(L . &ND Group 4-11

M OAPT_,OA;__JPPROXIHAT|ON:

,'t ×, V;
M O[CL_._-r INTEC_I?,
M Z, HIT, MISS;
M O0 FC_ I : 1 TO 1000;
M X : P/-P,_OM;

ir :, _.
M IF X + Y <: I THEN
M HIT : HIT ¢ 1;
M ELSE
M MISS : MISS ¢ 1;
M E_;3;
M K'_ITE|6) 4 HIT / 1000;
M (;LOSEOARTSO_RD.A_PR_XZMATEON:

• Since tile compiler used in prepanng listings for this manual automatically indents pro-
grams to correspond to a structured floss, diagrams will not be provided t_r subsequent

examples. The same nlformation is contained m tile indenting as nl the flow.

The simple do group {_lthotlt iteratlo,) is classified as an t'_'c(',lr,Jhlt' statenlent. No

additional machine code Is generated however. An extra do group, like all extra set of paren-

theses, is sometnnes used for clarity. In the order of magnitude example, tile else clause of

tile outer IF statement is btacketed by an unnecessary DO...FND pair It is common

practice it, use a do group as a then or else clause even when it is not required by the syntax.

this allows for tile possibility of later insertions.

llre_ is no way to branch into any part of a compound statement from outside the

statement. HAL/S has a GO TO statement, and any executable statement may be labelled,

but _strictlons are imposed A label inside a do group, in a then clause or an else clause, can

only be used in GO TO statements which are themselves m the same sroup or clause.

The do group h;Ls two uses, primarily, it MIows the nestmg of statemenis in tests and

loops, The secondary purpo._ ts to define the scope of temporary data.

• f Tilt' TEMPORARY statement ts similar to the DECLARE statement. It allows a tem-

a t',)rary variable of any type to be created, as shown on the tbllowing page
• 4

#p -,,
r

,L

1980004512-063

4.12 Condltlona! F_eeullon

M EX_'PLEZ:

M O|:LARE V_L VECTOR,
j M MY_FRAMEM_TRIX;

M OECLAmE_ECTCO,
M RESULTS, RESULTS, E;

C . . o

M 00;
M TEMPORARYV gl_rME VECTOr;
E m

M V_P_.It_E = MY_FRAMEVEL;
E
M g_SULT! a b_IT(V_Pl_IMC);
E - -
M RESULTZz V F"RXME• E;
M El_;
M CLOSEEXAMPLE_Z;

The vector, V_ PRIME, exists only for the duration of the do group. If the next do

group contained:
l

TEMPORARY S SCALAR;

S would probably occupy one of the storage locations that had just been _'sed for

V _PRIME.

Temporary variables may be of any type and precision. They may not. however, be

initialized or gtven other minor attrtbutes. TEMPORARY statements can ,n/y be used

withm do groups. Storage is allocated to temporary variables for the duration of the

execution of the immediately enclosing do group. The TEMPORARY statement informs the

compiler of the range over which a variable will be needed; the actual allocation and freeing

of storage is done in an tmplementation-dependent manner.

Very few restrictions are made on the use of temporary variables. They may not be ref-

ferenced at all from outside of the containing do group: otherwise, they are usable in all of

the constructs introdu_.aed so far. Proper use of the TEMPORARY statement can reduce

a program's size without substantially increasmg its execution time.

a $

1980004512-064

The DO, . ._.?,D Gr,_ul, 4-13

Exercir,.s

4.2A Q A standard means of flowchartmg is to use a system where.

TilE_LSE means a condttnonal executnon along one of
I "_/ ! the paths (but not both!) depending on the

condttion represented by "CX'.

represents a DO. .END group wsthout

an)' conditional branches m the group.

Consider tile following flowhcart: _ _F.

. _ • r_ ,_,0,_.._o_oI

groups each 5 state-

ments long.

['_ represents a DO...END

group 150 statements long.

Rewrite thts flowchart in a way to represent a sllorter program.

Can this change be made in a valid HAL/S program?

4.2B Write a ttAL/S program that will solve a system of 2 equations in 2 unknowns

as in problem 2D.

However, do not assume a solution exists, incorporate a test to insure that the

denominator is not zero.

• tJJ
4.2C Implemeat the following structured flowchart segment in HAL/S, using as few

• _ DO...END groups as po-Jible.

.g

1980004512-065

4"14 Condtt#onol Exrc'_t;o_

! '
Y< X ' Y< X- ¥]" !

i|l i i ,

Y Y - l

i i

IF '/'lIEN X _ X - 1
Y >X+

' ,I

4.2D Consider the followinj Powchar! on the next pale:

C_ means a conditional execution on CX.

" _ F_ means a sinlle statement representedby M,
d

a) There is a construct in the flowchart that is not lelai in HAL/S. What is it?

b) Rewrite the flowchart to eliminate the iilelgd construct, and write a code frail-
men! correspoodin| to this structure. Do not introduce or eliminat,: any
conditions,

c) How would a structured flowchart have made this mistake more easily
avoidabk.? "

1980004512-066

The DO. .I_N,D Group 4.1._

i
4.2E In problem 4.2D, we ha_'eseen that tf the branches are to be preserved as silown,

thecode¢orrespondinjto

had to be lepeated.

._" # Letssaythat:

." [7]
is 2_0 statements |onj. whereasall theother

• [_ °$

arestir!asinglestatement.Rewritetheflowchartandthecodeto allowthecodefor

N
,#"

to appear only once.

;I
r

1980004512-067

q
+L

__.+

++.

•t3 H(X)LF ANS

Ii'¢ ILSt bet_,¢¢n II: and TIII+N in lh¢ IF statelnenl is e6her a ¢omparlson or a h++.,h.d,
t _i,,,.,,++,+ A hi+ok.an expres_lon =sa boolean ++ll'lableGra ¢omhlr+dllon lher¢of. Both t)pt'+ jF
t+l tests can he compounded usmg AND. OR..;nd NOT. hut lh¢_ cannot be m;xeJ m onr IF

,ddl¢lnenl A bool¢+in expr¢+.mon alv+a)+ +an be conserted Io a comparison .i._111
Y

++.
M [•t,"Pllt +:

M O[CLJP[ql Q'_rS'OL[IP+ ,_
[
M ZF Q1 = T_UE THIN

M DO;

C ..
C .,°
C ...

I
M (P_;
M C_.O._![_P++'L,I_I;

rhL" IF" _tateln_'n! c.m a6o h_' _nlten IF QI rlil-N

IRUI. ,s a ho_fl_an I,teral. II mseqmvah'nt to BIN'I' or ON Boole'-,n_can take on one
of only t_o po_',l¢ valu¢_ the other ,s _ntt_n FALSF. lllN'O" _r OFF. l'h_ three d,ffcr-
CBI rCpLPCSCI]I.IIIOII+ _'or each YaIu¢ JIlOV+ mnemonic comparisonsand a_L,#l_nlllellt$ a+ in'

I)ECLARI= B(X)LEAN INITIALIOFFh
P<)_.'I_:+g. RI+++S,L)Y.

IF Ri'ADY : FALSE r|tI+;N Pt)+._'R : OFF,

As the eXalnpl¢ shows, the form of the d¢+;lar¢ and assignment ,ttat¢menlS Is the glm¢ for +_"
hool¢ans as for other data types+ Bo..)leans are annotated by the compiler mtth a "." on the
I line.

$ Booleans are u_cd for flap, +lgnal +talcs and to opllm:z+: compl¢_ comparison,. [he
++"

4 ke?wor, I RIR)LI.AN is interchanlg'abh: with BITt I). Bit slnnp of tcnltlh I_r¢aler than one
• are dl,+vns.+cdm (hapler 13. Since th¢ concept of a "'fl+tlf' is so common, the IlOOL! AN

key_ord is mcluded In the lanltual_ and Ih: applicable subs¢t of BIT opcrahons is ['re.
+enlcd hg"I'_1

_: The precedml+ IF +lalcnlciit woukJnormally be +rllten

IF NOr RFADY TIIEN PO_'I'+R ,, OFF,

+

t.£

i+

'19800045 '12-068

B_olt_ns 4. I ?

NOT READY Is a boolean expre.ssitm, which can also be written 7 READY, Boolean ex-
prcmon,_ are composed of boolean variables, the operators AND. OR, and NOT. and
boolean functions, The operators are defined __,.,thesr truth tablesbelow

A AND B A OR B NOT A
B B

ITRUE FALSE TRUE FALSE _ FALSE

TRUE ITRUE FALSE TRU'_'TRL'E TRUE FALSE TRUE
A AA

FALSE IFALSE FALSE FAL_F TRUE FALSE

OR _ the inclustve or operator. Exclu.ve or is prov_ed as a built-in function.

IF XORIA,B) THEN. . .

J but the equivalent statement.

IF A -1- B TLIEN...

is preferred.

There are sixteen possible distinct binary operators on booleans. Thes_ mclMe AND.
OR, and HOT as well as exclusive or. the bl-conditton;,I, etc. Any of them can be expreued
by ,_ combination of AND, OR ard NOT. Any bool:an expression van be converted to an
equivalent boolean express_,Jnusinl_only _'_OTand one of the other two. One such trans-
formation is expres,_d by DeMofpn's rules:

A AND B -= NOTINOT A UR NOT B)

and

A OR B '_ NOT(NOT A AND NOT B)

• _ For another example, XOR(A.B) could al_o b_ written "A ANDINOT B) OR (NOT A) AND
J n".
ed'

The exprcuion A41kl-]B) I (-'IAMkB is the sameas "A e_clume-or P'" ._r 'A is not equal
to B", qecau_eAND hashilcherprecedence than OR, the expressionis interpreted as'

(AikqTB)) OR II-IA)&B)

The boolean opcrato., AND, OR, and NOT, have cofl_delrablesm1_trit_'s to the ahlh-
melt4. Old.atoll, multiplication, addl.on and I_'ption, respectively. Thb results in the con.
vention that ;_lkB I C&D is in_erpr_,tedas the OR (Iolpca] sumj of two ANDs llolpcal pro
duelJ).

I.

1980004512-069

Y

_ d'lN ('lmd, ttotz,11 _'_t'¢l_tt,_t

Con_kler the following example of the hanslation from an l:nghsh statement of a con- ""

dttton to a boolean expression.

English If the power is on and either It IS not overheated or file override Is set. and
edher swttch 6 is on or It is off and _.,wlteh 7 is sel.

HAL/S Power & (not overheated or override) & (swztch 6 or (n.q swttch 6 and swttch
7)).

Careful study of the I:ngh I_ tbnn may t'az_to reveal how the precedence zs commumcated.

but most readers will see the correspondence between the two forms. Symbohc logic shows
that whde there are a number of rehable rules for translaimn, much rests on the reader's

understanding of the s_tuatmn to whtch an assertmn applies.
¢

The boolean expressmn above Js written w_th the minimum number of parentheses. :-
taking advantage of tile precedence of NOT over OR and AND. The expression. (NOT

I SWITCII6 AND SWITCitT), has the truth table'

SWITCii6
ON OFF

SWITCli7 ON FALSE TRUE
OFF FALSE FALSE

and is etlUlValent to:

((NOT SWITCHfi) ANt, SWITCH7). "

In summary.

PreeetlciIfe of boolean operators"

Fir._t NO F

AND :
Last OR -_

• In addition to the test in an IF statement, boolean expressAons may be used in assign-

• • ment statements (the left hand side must also be boolean), in comparisons with other
boolean expressmns, and ill WHILE and UNTIL loops (as described in the next chapter), i

Boolean expressions m,_y appear in WRITE statements; boole:m variabko may be read.

No other data type is automatically converted to boole, 'L and boolean is not auto- :"

i, maticall; converted to a_y other type. Booleans cannot bt uy,cd In arithmetic expressions,
and anthmeti¢ variables cannot be used in boolean express_o,l,. The concept of precision

does not apply to booleans, but hit strings may be viewed as sets of booleans on which

operatmns can be perfomled in parallel. ,,

¢

6

L

q9800045 q2-070

B_,olcans 4-19

Both typesof test in the IF s_atementcanbe writtenusingthe AND, OR. an,: NOT
operators.Theseoperators¢ombrle either comparisonsor booleansvia precedencerules
like those of arithmetic. Parentheses can be used to override the normal precedence. When
,',mpari_m_s are combined, it is good practice to parenthesize

li'tl < 0) OR (I > 9) "FttEN...

In boolean expressions, the precedence rules make most parentheses unnecessary: an ex-
cept,on is as m.

IF A OR (NOT B) TtIEN...

It is trot possible to combine comparisons and booleans in a singleexpression, if a statement
(or group) Is to be executed based on both a boolean and a comparison, the test should be
written:

• IF (CHECKING = TRUE) AND (I < 0) THEN I = -!:

or as.

IF CHECKING THEN IF I < 0 THEN I = -I:

Exercises

4.3A I:or each ol tile lbUowing, tell whether it is a boolean expr,;';sion,a relational ex-
pression, or illegal. For the boolean expressions, tell whether the value is TRUE
or FALSE: for the relational expression, tell whether or ,or the condition is satis-
fied. Assume that:

" A, Bare INTEGER

_'. g are 3-vectors

UPFLG. TRFLG are booieans

• _ A= 12 B=6
a 9 = (2 4 b) g : (3 4 7)tlr

UPFLG = TRUE TRELG = FALSE

a) UPI_LG- TRI_LG

_ b) NOT UPI_LG
-, c) NOT(V = S)

_ d) NOT TRFLG OR A > B
¢) (A < B) = TRUE

f_ UPFLG _' TRUE

g) TRFLG & ("[UPFLG)

o

I.

1980004512-071

4-20 Condltw,tal l:._evut_on

4.4 DO CASE AND GO TO

The most basic flow control constructs are loops, the IF statement, and the DO group.
These may be combined and compounded to implement complex structures of decisions.
The remaining flow _.ontrol statements fill in a few gaps. They are not as heavily used as
the various forms of IF and DO

The IF statement allows a two-way decision based on a comparison or boolean. An
n-way brancn based on an integer can be written with the DO CASE statement, for
cxample.

H EXAMPLE4:
H PRC$=AM;
H OECLA_E 5CALAP.
M A, B, C, 0;
H OECLA_E t_GCO_ ZNTEGER;

J H OECLAeE $CkLAR,

H VALUE, OLDVALUE;

C • • •

M O0 CASt N'.__GOOO;
M ELSE
M 00;

H VALUE : OLO_VALUE;
H RETL_H;
M Eta;
M VALU£ : A;
M VALUE : IA * B| / 2;
M VALUE = MIOVALIA, B, CO;
M 00;

C . . .

M EN0;
M thtO;
M OLO_VALUE : VALUE;
M CLOSE EXAMPLE4;

a" t This code seL, VALUE to some combination of the variables A, B, and C. It could
ne part of an algorithm for combinin$ n_dundantvalues from a set of sensors. The code is

• 4 diagrammed:

°C" _'

l*

{°,

1980004512-072

DO (:45/'" a,d GO TO 4-21

I

,_.0000/-._v,,uE-0,0lv,L_]

! C I)RETURN

AoLDVA,UE-!

I
• 1 _A.,_/2I

31vA_uE-]
. ---I,IDVA[(A.,.C]

4

I|

I I

[I

Any integer or scalar expression may appear after the word CASF. The expression Is eval-
uated and rounded to the nearest integer if necessary. In this example, if the expression,
NUM GOOD. is less than one or greater than tour, the else clause is executed. Otherwise.

• ¢ one of the four statements between the end of the else clause and the endL DOCASE
statement is executed. The fourth statement (fourth case) is a DO grovl' • another

• 6' instanceof the use of DO. , .END to combine several statements where one, ared,

Only one of the cases is executed. Aft_'rthe selected case is done. control passesto the
slatement after the END statementwhtch matches DOCASE (in this example, to the assign-
ment of OLD VALUE).

: Ea_'hcase may be any executabk- statement. This includes assignment, IF. , .THEN
• . YLSE, l/O, a DOttroup,a loop, or a further DOCASE statement. The only way to pass
control to one of these nested statements is by executing the DO CASE header with an
appropriatevalue of the expression.

#, ,*

¢

_L

1980004512-073

4-22 (ondmonal _.x¢cutlon il

]'hecompilercountsthe casesand printsa casenumber totheextreme rightof each

in the listing.Ifan el_cclauseissupplied,code isgeneratedtocompare thevalueof the
case expressmn against the bounds, and the number of cases, If the expression is out of
range, the else clause executes and conirol then continues after the END of the DO CASE.
Thr else clause ma_, be omitted entirely, in which case no checking is performed. Omission
of the else clause may be risky, as under some circumstances, control can b,. passed com- f

pletely out of the HAL/S program if the expression selects a missing case and no else clause _
is supplied.

In the example above, a RETURN stateme,:t appears in the else clause, When RETURN (
is used m a program, it is equivalent to transfi rring control to the close statement, it exits
the program. --

In chapter five, the EXIT and REPEAT statements are described. They are drawn in the _'
same way'.

t .I I "
(gETUpS)(Xl+) (RE,EA,)

a '-

Each is an unconditional transfer of control to a point defined by the structure of the pro- _"

gram rather than to a user label. This completes the set of symbols used in a structut'cd flow f
diagram.

The flow control statements include those described in this chapter, loops, and (in a
sense) the statements for defining and invoking procedures and functions. Some of the
real-time statements of Chapter 12 may be thought of as transferring control, though there
are conceptual differences.

The only other flow control statement in HAL/S is GO TO. The experience of a number
of large HAL/S progr,_mming projects has shown that the GO TO statement is not neces-

sary. It is provided chiefly for mechanical translations from other languages.

Once a degree of familiarity with the use of compound statements for flow control is
achieved, it can be seen that the concept of a "conditional transfer" or branch instruct/on

is merely a free form notation for flow diagrams: a line with an arrowhead. The restrictions
on the use of GOTO correspond to the rules for a structured flow diagram presented in

• t Section 9.1. GOTO's are not allowed at all in a proper structured flow, but HAL/S permits
some exceptions:

1) between unnested statements in the same program or other hlo:k,

2) between statements nested at the same level in the same compou,,,', statement, .
__

_ 3) to a less deeply nested statement in the same block, provided that 0:¢ target state.
ment is not contained in any compound statement which does not a:so rontain the

"" GO TO statement.

q9800045 q2-074

DO CASE and GO TO 4-23

Exercises

4.4A Rewrite the following code segment using the DO CASE statement: 3

IF I = 0 THEN SCRAMBLE = 4;

ELSE IF I = I THEN SCRAMBLE = O:
ELSE IF i = 2 THEN SCRAMBLE = 5;

ELSE IF I = 4 THEN SCRAMBLE = I: "_
ELSE IF I = 5 THEN SCRAMBLE = -:

ELSE SCRAMBLE = 3:
?

• ._m

_t

] 9800045] 2-075

The IterutlveDO FOR Statement 5-1

5.0 LOOPS

A loop is a constrJ :t which causes a set of statements to be executed repetitively. In -.
"! HAL/S, a loop is a coml_oundstatement: The statements to be iterated are nested within

the loop. Four types of loop are provided, so that the need for explicit backwardbranches
: (GOTO's) is virtt.allyeliminated.

A loop is created in HAL/S by attaching one or more iteration control phrases to the
simple DO...END construct which was describedin the previouschapter•These iteration
control phrases govern the numberof times the loop is executed and may provide acounter
or "loop control variable"which can be referenced from within the loop.

The example below uses the most common type of loop, the iterative DO FOR, to
compute the factorial of a number• The number, N_MAX, is read from channel 5 and
(N_MAX)! is written to channel six.

M FACTU'_'][AL:

a H PROG_AH;
H OECLAPE INTEGER,

n gESULTp n flAX, _r;
M R[/_Ol S) JL_AX;
M REStJLT- 1;
/I DO F_ I = Z TO H.t£tY. BY I;
;'I RESULT = I RESULT;
M Et_ ;
H k_ITEI 6 } RE_'ULT;
h CLOSE FACTORZAL ;

Note that the body of the loop is executed repetitively until the control variableexceeds the
rmal value specified after the keyword "TO". The example shown computes factorial
(NMAX) by doing N MAX-I multiplies by the control variable, which takes on the
values2, 3, 4 N_MAX on successive iterations.

In addition to the iterative DO FOR, other forms of iteration control are:The discrete
DO FOR, the WHILEphraseand the UNTILphrase.

These constructs probably are familiarto the readerwho has used other algebraicpro-
Ip'amminglanguages, therefore, the remslnder of the discussion in this chapteris primarily• 1,

• concerned with the limitations and restrictions of HAL/S loops, and the ways in which
, • ' these constructs may be combined with each other and withother featuresof the language.

$.1 tHE ITERATIVEDOFOR STATEMENT

_ In the precedin8 example, the loop body is asinglestatement:

: RESULT : I RESULT;

In general, the loop body may contain any nu1.tberof executable statements. Since the loop
b constructed from a simple de poup, the TEMPORARYstatement may also occur in

• " the loop body.

.t"

._,_ 'i

1980004512-076

'i-2 1o,,ps

In the phrase.

FOR I = 2 TO N MAX BY I:

Iisk'rmedthe loopcontrolvariable.2 isthemmal rah,'.N MAX isthefinalrah,',and I
I_ tht" Iltt're'Ptt('H[.

IIAL/S places _ery few restncttons on these four parameten,. In parhcular, the loop
controltandble may be any single or double precision Integer or scalar variable.* For
example, gl_,enthe declaration'

DI-('LARF A INFEGFR,
B INTEGER DOUBLE,

C SCALAR,
D SCALAR DOUBLE:

• all Iour of"the follownlg combmations are permiss.ble.

IX') FOR A = B TO C BY I);
IX) FOR B = 1) TO C BY 1:
DO FOR (" = D TO B/A:
IX) FOR D = A-B TO A+B BY D,

The initial and final values and the increment used in an iteratlve DO FOR loop may be

any' arithmetic expression. That _s, each may be any expression which evaluates to a positive
or negative, single or double precision, integer or scalar value. Each expression is evaluated
only once, at entry to the loop, This. if variables used in the expressions are modified
within the loop, the iteration parameters of the loop are not affected.

I)O FOR TEMPORARY I = 2 TO N MAX BY I.

A TEMPORARY loop control variable created m this way may be used within the body of
the loop in any way the _a declared variable could be used, but outside of the loop the 'rEI_'-
PORARY variable does not exist. Since the TEMPORARY control variable is effectively
uqDECLARED at the end of the loop, the memory locations t,x'cupied by the variable mar

be re-used, thus reducing the storage requirement of the program containing the DO FOk
j" J TEMPORARY, tinder sonre versions of the compiler a speed advantage may also result.
• • TEMPORARY control vanables created in a loop are always single precision integers; their

nantes must not duplicate declared data or other TEMPORARY variables in the same loop.

The initial and final values and the increment used m an iterauve DO FOR loop may be

any arithmehc expression. That is, each may be any expression which evaluates to a positive

or negative, single or double precision, integer or scalar value. Each expression ,s evaluated
only once. at entry to the loop. Thus, if variables used in the expressions are modilied
within the loop, the tteration parameters of the loop are not affected.

*Singleprecisionintegert are generallythe mort efficient.

dr"

1980004512-077

The Iterettve DO FOR Statement 5.3

Note that in HAL/S the loop control variablemay be a scalar;e.g.:

DECLARE SCALAR, X, PI CONSTANT (3.14159):
DO FOR X -- -P! TO PI BY .001;

WRITE(6) X, SIN(X), COS(X), TAN(X);
END:

This code will produce a set of trigonometric tables, giving sine. cosine, and tangent
valuesfor 2000 _rdifferent angles.

The operaUon of the loop is the sameas for integers: On each iteration, ;._-increment is
added to the loop control variable,and if the final value is not exceeded, the loop body is
executed. The values taken on by X are: -w, -w+.O01, -n+.002, ..., etc. The last value
will not exactly equal _, because it isgenerated by a sequence of additions of .001.

In the event that the resultproduced by adding the incremeht to the currentvalue of the
a loop variable is not of the same type or precision as the loop variable, the asual rules for

mixed mode assignment statements governthe conversion. For instance, if the loop variable
is an integer and the increment is less than one, rounding will occur on each pass through
the loop. In this case, if the increment is positive but leu than .5, the valueof the loop con-
trol variablewould neverbe changedand the loop would neverterminate,

As previously stated, any or all of initial value, final value,and increment may be nega-
tive. For instance, the loop below is functionally equivalent to the one i,, the originalform
of FACTORIAL:

DO FOR 1 = N_MAX TO 2 BY -1;
RESULT = 1 RESULT;

END;

When a negative increment is specified, the termination condition becomes "is the loop
variablealgebraically less than the final value?"

The only way that the body of a HAL/S loop may be entered is by execution of the DO
statement which heads the loop; however, control may leavethe loop by a variety of means

," _ other than the control variableexceeding the final value (e.g., RETURN, EXIT,and GO TO
, _, , statements, error conditions, etc.). Since the increment has beenadded to the loop variable

before the test against the final value is made, at normal exit from an lteratlve DO FOR
loop the loop variable will be greater than the specified finalvalue (if the increment is posi-
tive) or less than the final value (if the increment is negative). This fact may be used to
determine whether or not the loop was exited prematurely. Use of this feature is illustrated

_" in the sample below, which sets the variableNEG_PART to the number of the firstnegative
_. component in a vector, or to zero if there is no negative component:

DECLARE V VECTOR(5);
DECLARE NEG_PART INTEGER;
DO FOR NEG PART - I TO 5;

IF VSNEG_PART < 0 "rilES EXIT;
END;

_, IFNEG_PART > 5 THEN NEG_PART - O;

.ta •

IF," ".'

r

r

lb

1980004512-078

rhe ! XI r .,tatcnIent t.,,not fulls described unlll later m tim, chapter, bnt m tlus case the
tneannl_ Is]lllulllte It colnpollent Ilolnl_,r _/,. PAR i"or V Is less than zero. control exits
froththt.looptedthe_,e¢olldII-It.st)1"hus.NFt;_PART millbe greaterthanthe._ifonly

If' the elltlre _.e_.'tor v,a$ e\alntlled v.'ltilOLlt fIndIng a negative vajlle,

SIlICa' I[Iv. llecess;.Ir_.' In te¢.[NI (; PART otltslde of the h -n a l¢lnpora_' loop control
tarlablc v,ould not be approl_rlatc III thIs exanlph'.

ro fhld the _t't olld negatlse component in a rector, the following loop could be added

after tileone abort

IX) FOR NFG PARr = N}-(; PARE To 5. /

IF VSNFG PART --_ O IHFN t'XIT. .,,.,,
l-Nr).

Since the mit,al and final _alues and the .ncrement specified m an iteratl_,e DO FOR
a loop art" e_aluated onl._ once Iprlot to the fi_t iteratJonL there is no conflict in usm[

NFG PAR r both as a loop control talue and as the initial v:flue. this new loop will con-
tinue v,here the first stopped.

rite "BY 1""clause has been onutted above, since I is th.- most commonly used incre-
ment. it is the defaul' and need not be speofied. +.

In summa_', dw trerattte DO t'OR takes four parameters, the first, the control van-
able. lua_ r,e an.v pre_lot,sl_, declared artthlnetic Idcqtlfier or may be a TEMPORARY

,nteger created within 'he DO FOR statement.]'he nutlal value, final value and ircre-
111¢Ill Illa_ be all._ arithmetic expression, the incremt.'nt nlay be _lov, ed to default to One

by onutttng the BY clause Th¢_' expressions are evaluated prior to the first pass through
the loop, and the results detennme whether the loop is executed once, many tnnes or not
at all. rite loop tennmates _hen the ,+ahle of the control variable passes the final vah'e

,,pecffied in the [O clause. Later in this chapter, we will set" how the addition of a WHILE
or UNTIL clause can inodlfy the execution of a loop. but first we wdl exantine a,,other
form of the IX] FOR construct.

Exercises

j ¢
$.IA Consider the following code fragment where

I & N are integers.
S is scalar

_; N = I0:
S= .t.

", l)OFOR l= I ro 2 BY S:

! N=N+I.
END.

_,'hat is the xalue of N on exit from the loop?

5.1B Consider the example where NEG PART was set to tat number of the first com-

..c" ponent of a vector less titan zero. ot tero ,t"no element', were negatise.

s •

, _,

1980004512-079

?

! he DLIt ret¢ /)0 _ OR Statement _-¢ .-

d'•

Changethecode_venintheexampleto:eavethenumberofthelastnegativeco,n-
ponent instead of the first.

"_ 5.1C Constderthe followirtgcode fragmentwhere.

N & I are mtesers. ,,

7

N=9:
DO FORI =1 TONBY2.

N=N+I.
END:

Whatis the valueof N on exit from the loop?

• _ ID Considerthe following code fragmentwhere:

A is a 5x5 matrix,
X an _Y are intel_ers.

Xa];
ROWS: Y = I,
LOOP: A$ (X,Y) =.2;

IF Y • _ TilEN GOTO OUT.
Y=Y+I;
GOTOLOOP;

OUT: IF X • 5 THEN GOTODONE:
X=X+I;
GOTO ROWS;

DONE:

• / a) Whatdoes this do?

b) Rewrite this usinlgHAL/Siterative do forloops.

1980004512-080

5.2 TIlE DISCRETE IX) FOR STATEMENT

In order to understand the utzht_ 3f another type of DO FOR statement, considerthe
problem of recogm;rmg prime numbers. The code below setsa boolean variabl_, PRIME, to
TRUE If NUM ,s pr=me and to FALSE otherwise (for simplicity. NUM ,s assumed to lie
betu,eenone and one-hundred).

DECLARE PRIME BOOLEAN INITIAL(ON),
DECLARE INTEGER. NUM, i;
READ(5) NUM:
DO FOR I = 2, 3. 5, 7:

IF REMAINDER(NUM,I) = 0 THEN PRIME = FALSE:
END:

This code produces the correct answer over the range IO to IOO. but Is inefficient. A
better algorithm is to test the dwisibility of NUM only by numbers v,h_ch ire themselves
prime, This can be convemently expressedusing the disc=ete DO FOR.

a
DO FOR I = 2. 3. 5. 7:

IF REMAINDER(NUM,I) = O THEN PRIME = FALSE,
END:

In th=s ease. the loop isexecuted only four times, with the loop control variable, I, equal
to two on the first pass. three on the second, five on the third and seven on the final iterao
lion. The reader may note that both programs contain a logical error in that the wrong
result is obtained when NUM is equal to 2, 3, 5. or 7: this error will be fixed when the

WHILE phrase is introduced in the next section of this chapter.

The form of the discrete DO FOR zssimilar to the iterative version: the discrete form
sp,:cifies a list of values (expressions) to be autisned to the loop control variable rather than
an algorithm (initial value, final value, and increment) for computing successive values.

On each pass throulh the loop, the control variable is set to the value of one of the
expressions to the rtl_t of the equal sign. The expressionsare used from left to right on
successive iterations of the loop; each one must evaluate to an integer or scalar value, If
the type or precision of any expression is different from that of the control variable, the
usual rules for mixed mode assignments are applied.

j"

• d Unlike the expressions in the iterative DO FOR, the expressions in the discrete DO

FOR are not evaluated until the iteration of the loop on which they are to Ix assignedinto
the control variable. This means that the value of the control variable on future passes

throul_t the loop can be changed by storing into variables referenced in the expressions from
the body of the loop; e.g.:

i DO FOR I - I. !. 2L 31 ;

At exit from a d_crete DO FOR loop. the conhoi variable retains _.hevalue of the last
expression, unlt.=J the variable war TEMFOR t.RY. m wh '_ cue it is undefined.

1980004512-081

r_r, h Ill! b ('/..._¢ 4;.-

The remaining iteration control phrases, WHILF and LINrlL, provide for looping _lth-

out the use of a control variable. The next two sections of this chapter dcscnb_ how to

create a loop with these phases, and sho_ how they ma) be used to modify the effect of a
DO FOR.

$.3 THE WHILE CLAUSE

The _'HILE clau._ ma) b_ ap_nded t,_ a simple DO... END group to create a h_,p, or

zt may be :_ppended to either)rm of the DO FOR to introduce an addztiona| comb|ton for

ctmtlnuation of a loop. The genera] form of the V_'HILF clause :s

WHILF boolean expression

or

WHILF relahona] expres_to,.

The b_,olean or rel_.ttonal expressloll represents a ¢ondltlOll for, OHtJtlgt_tlOtl of the k_)p, aS

|onli ,l_ it e_aluates to ;he TRL'F state, the loop continues. For example

' DO WHILF TRUF.

FND.

Is an t_finlte !oop, _hereas:

DO WHILE X < 2

FND;

conttn_les until _2

r|l¢ e'cpre_ton in the WHILE clause is evaluated pric,r to _ach execution of the f'usl

stalenwnl of tile lOOp body. if on any pas_ the expression ev'.duates to FALSI'. th_ loop
body is sk,pped and execution continues at the statement after the END uf the DO WHILi-

or DO FOR . . WHILE loop. I'he DO V, HILE loop is particularly useful when the number

of _terations that should be made throuvJ_ a loop is nut known m _v,lvance. Consider, for

example, Newton's methtxJ for conlputmll the _lu_'_ root of a numt_r. X. The method

I_nerato+ clo,k'r and closer approximations u.td the curt'InS approximation is "'1o_

enough", "'Good enough" ts dcfin¢d as the i_oint _'here the |am m accuracy from the last

Iteration was ne_it.ble tleu than H'SIION) The example b_low diustrates the point.
a it

• I t_ m[uTot* SQI I:

H _|¢t.tlll[X ScaLLlll
n I_|kc_| |P11tL_4 c._lTlu_v! .lit|i;
II _|¢Lalt[|EaLtl, C_t_t.._PIq_ox,Nlu JtPPtOXI
n tl[tOl S | l(:

; n NI[M.&PI_OX • X / _lt
_ ft OLD.APFIt._J¢• BI

n O0 _t_l tllsltq_u.ifflqte v - O_,O.iLImm_l) Ilqltett;

m_ n eL9 .am0J • t_[t* u_mox;
H t_l JUqlE0Xs 'OLO aPPI_'L * X / 01.0 4Pfl_| / Z;
H IN0;
H I,UlITIIt) "S_II 0_ *t x, * |$ ', Nlg.tlqqKmI
ft CLOS_ N_T_IT I

1980004512-082

._ Loops

Note that this proa_m can be made to produce more accurate rcaults (at the expense oi

greater execution time) merely by decreminl the constant EPSILON. Note also that if
X t$ equal to zero. the Wfl:LE test will faiJ on U,e tint ¢valuatio, mid the correct answe'

*ill be produced but no division by zero wi|_ o_cur.

When the WHILE clause is adde_, to a DO I-OR. a new loop is not created, but an _"
addztional condition for continuation ,f the ¢xistinll Ioo1" is imposed. This combination
can be used to correct the deficiency m the PRIME program of Section 5.7 -.s shown
below: _,

DECLARE PRIME BOOLEAn; IN(TIAL (T,_UF). I INTEGER. NUM INTEGER: _"
READ(5) NUM;
DO FOR I - 2. 3. 5. 7 WHILE I < -, 5QRT (NUM);

IF REMAINDER (NUM.I) ,, 0 THEN PRIME - FALSF.

END;

a To se¢ how the WHILE clause corrects the hue in the old version suppose NUM equals
3. Under the old version. REMAINDER (3.3) would t_ computed on the second pan
throulh the loop..'Le result would be zero. and PRIME would b¢ set to FALSE. Now. how-
ever. prior io each execution of the loop body, the test "is I <- SQRT (NUM)?" is made.
On the f'u3t execution of the _ FOR statement. I is set to two. Then ! is cor_parcd with
SQRT (NUM). which here is SQRT '3)or 1.732. Since it is not the case that ._<- !.73. _, the
loop body is not executed and PRIME remains TRUE. Addinl the 'NH|LE clause in th_

example also has _he effect of determininl the primeness of most numbcn in fewer itera-
tions. For example, when X " 17 the loop is i!eratcd only twice since 2 is less than or equal
to SQRT (17) and 3 is !¢_ than or eq_d to SORT (17), but _n¢ next numher in the DO
FOR, $, is IXeater than SQRT (i 7).

EXERCISES

5.3_ CE._-._. _' _e in the last example in Section 5. I that finds the number of the first
c*', ." ,.' _' q. :liminatin8 the Jwed for the line:

-i ,0 , %;,_ _.' .,, ,;(_T < O TIIEN EXIT

by usin8 a WHILE clJuse.

,#

S.4 TIlE UNTIL CLAUSF

; The Ilenel form of the UNTIL clause is.

UNTIL booleam expreu_-n

or

UNTIL re_JtioJul exp_.qion.

1980004512-083

)

.4 '-'

The UNTIL Clause .5.9

It may be used in the same contexts as the WHILE clause: with the simple DO... END
,_ group or with either fenn of the DO FOR statement. Unlike the WHILE clause, however,
'_ the UNTIL clause speciC'es a condition under which iteration of the loop is to terminate. :

When it evalutes to TRUE, the loop terminates. For example,

DO UNTIL 3 = 4:

END;

is an infinite loop, whereas

DO WHILE 3 -_ 4:
I:ND;

is effectively a NO-OP (never exet.utes). UNfilL is not, however, simply an inverse of

WHILE for the ;ollowin$ reason: An UNTIL clause never terminates a loop before the.t_rst
pass through the loop body This property of the UNTIL clause may be used to avoid the

need*emitializevariablesuscdinthetermination .mdition of a loop. Suppose, for instance,
a that a _rogram is to read vectors from channel 5. When a zero vector is read, the sum of the

previous vec:ors is printed and another s-t is read. The program is to run indefinitely.

This could be express.d via two WHILE loops: <

DECLARE VECTOR, TOTAL, V:

DO WHILE TRUE, 'f
TOTAL = 0; ;.
V = VECTOR (I, 1, 1):
L_ WHILE V "7 = VECTOR _O, O, 0):

RE _D(5) V;
"OTAL R TOTAL + V:

WRITE(6) TOTAL: :_

END;

In this _xample, the assignment:

V = VECTOR (I, i, !);• l*

• ,' is used to force V to be non-zero before the inner Iot, p executes. If this statement were not ._
provided, the inner loop would not execute after the first iteration of the outer. -

Tht essential difficulty is that the inner loop written with WHILE will test the value of

V before i' has been read. ,o

7

qt

e:.

g'L ,',

1980004512-084

++

1 +-
4

; /l loops

If tilL"L'N I H. |'onu t., used t\w tile mixer lo<H',tile mtttahzatlon of V ts not Ileeded i

I)0 '_ltlI.|- [RUI'. '_
l'OI ,Xl = 0.
DO L'NIIL V = VI-CIOR tO, 0. OL

RI'AI)t5 t V.
It)IAL = FOI'AL + V,

! ND.

V,RIFI to) 1"O1AL;
i ND,

Smce the t TNI'IL clausc cannot {ernlttlttte the k_.sp betore tile fir,,t iter:ttton, the it_:.ttal

value of_,' Is ttnl,lH_t.srtant

XX'hen,as in this ease, the UNTIL clause is IlSetI with a simple IX)., FND itlX.sup,it is
uset'nl to ¢oncette of tile [el++'tll+laflotltest as being done at the end of tile loop rafter the last
,+tatenle)lt (siP"flit' I,.)o|) I'+('+d._)+

a

! Ikt.' tile _'illi I clause, UNI'IL Illa._ also hc used :l+,.all additional condition On esther

ts pc of DO I:OR "+tatetllellt. as Ill

DO I+OR : = I IO I0 VNIIL ASt = O.
INIt.

['Ills e_.,lllIple IS a loop (with no lool.s bod.xl which sets I to tile rode\ of" the (irst zero
COllI|'+ollell[111 a +.e+.'|or, A IIowexer, since the UNTIl t',lllllO{ lerltlll_alp the loop on its fi_l

iteration, i[" .,+_] ={), the loop v+ ill COil[lliIle 1(i look _or an additional/ere.

Wheu used +.tth a DO FOR statement, thL UNTIL clause causes a test for tern+mation
t

tm tile ,+,,coud ,ll++.Iall '+.llb.SeqllCtlt Iterations _,t"tile loot.s, or: the s.OCOlldthrougt: !ast titration,
tile test is pell'ornled atlt'r the It+sO I:t)R+ loop centre! l arlahle has been updated, t,ut +

h:'n _rc tile t'i:st ",tatemenI of fhe loop body is executed, :

F+,ercims

• t
._ +_.4A Ctmslder Ihe pn_bleln of exercise ._,3A. A proposed solution is shtIwll belov+.

.if#

I'Jl _'LAP, F V VECI'ORt._I;
DI:('LARF+ NI:G PART INTFGI-+R:

: IX| FOR NEG PART = I TO 5 UNTIL VSN[:(; PART < O: "
FND.

"_ IF NF(; PART "" 5 I'tlFN NI:G PART = 0:

+_ Why is thi_ not an acceptable solution'+_
+

, o41+

+ , , _, d

'_ +.+

1980004512-085

I Ill a'!,/l_!l'l-,ll "+ II

5.5 EXIT AND REPEAl

Tile cotlstructs alre,ld_, introduced in till+,¢lhlptcr provide tot tile repeated es.ecutlon of
a loop body, dlld for a £OlldltlOll Io be spet.'lllCd under v+h,ch control ISto exit |+ton1a loop
These language features, ho_.'e+.'cl, oni.x gosem tile execution of an t ttllrt' loop body. tile
statements to be introduced 111tius section allot a f,+,rll<m of a loop to b¢ repedtcd and for
a termination test to he lnade at ++tit'point ,,i the loop bod+_ rather titan ell) :tt tile begin-

ning or end. To see how the.se statements. FXII and RI-PFAT, augment t11¢otller loop
control ._taten:ents. consider tile following program.

/* TillS PRO(;RAM RFADS A SFRIFS OF ANGl-kS FXPRI-SSkD IN DFGRFFS,
CONVFRTS THI-M gO RADIANS, AND KFFPS A RUNNIN(; TOTAL+ ON teACH CYCLE

IT PRINTS l'Hl- CURRENT TOTAl- _,IN RADIANS) AND THE TANGENT OF THE
TOTAL AN(;LF PRODUCI'D. IT AUI'OMATI('ALLh STOPS _,+ltEN IHF RUNNING
TOTAl- FXCFFI)S 5 r_, OR It+ Till" COMPUTATION OF Till- TANGENT COMES TOO

a CLOSI': TO A SINGULARITY */

H T_qSUHS:
H F_CC+_H;
M _EPL_CE CAR_S BY "5"; /.CARD REA_E+ _5 D[VICE S"/
H PEPLLCE LIST BY "b"; /.PRINTER I5 DEVICE _'/

C_CL_;E SCAL_.

H TOTAL INITIALIOI,
H PI CC'_STANTI3.1_I$9_bl,
M ;_0 PE_ DE3qEE CC%STLP_TIPI / 180l,
M SHIFT CC';STLNTI_Z / _];
H 00 U_;TZL TOTAL > S PI;
M RELDIC_DSt X;
M TOTAL : TCTAL ¢ X _AO_PERCEG_EE;
M TF PI_ITOTkL - SHZFT_ PII < .001 THEN
M EXIT;
M _TEILZST) TOTAL, TANtTOT_L);
M FN_

h CLOSE TAN_SU_J$;

111 tills example, tile statcnlent:

•
"_ "'IF MOD(TOTAL SHIFT,PI) _+ 001 THFN FXIT:"

causes tile loop to tennmate mf TOTAL gets within .001 of _r/_",,,_r/."'. ,'to. If the FXII"
statemerd ts executed, _.ontro] passes to the statement after tlh FND of the loop ti'.e, to

,_ the CLOSF statement1.

'.a l'hr program might be mor_, uselill, however, It"instead of temunating ill a singularity.
it allowed tile user to enter another value and vontlnl.|ed. Fills can be ac¢Olllphshed by

'+ ,'hanging tile FXIT statement to RFPi:AT ;is foliows.

IF MODtTOTAL StlIFP, PI+ < .O01 TllFN RFPI.AT,

111++i_"

t"

dr, ,°

i,

1980004512-086

if the REPEAT statement ts executed co.ltrol will return to the top of the loop, where
TOTAL w,II be compared _lth 5 PI. if this test fads (TOTAL is not ,great:r than 5 Plk the

"_ loop body will be re-executed.

" This example sho_'s how EXIT ma_ be used to insert a completion test at an}, point in

tht. It_p bray, and how REPEAT may bc used to cause iteration of a portion of the loop
b_ly,

The gene_d t'onn of the EXIT statement is:

EXIT;
or

EXIT label;

_'hen used without a label, FXIT causes an unconditional transfer of control out of the

nearest enclosing IX), . . FND group Ii.e. to the statement following the FND of the m_me-

dtately enclosing loop or s_mple DO.. , END group). If a label Js supplied, it must n:atch

l t,ie label on sonic DO . . FND group in which the EXIT statement is nested; this Ionn
causes transfer of control out of the corresponding loop or simple DO . . . END gto_lp.

Similarly, the general Io_n of tile REPEAT statement is:

RFPFAT.
or

REPFAT label,

Unlike the EXIT statement, however, REPEAT applies only to loops When used without a

label it causes repetition of the nearest enclosing DO WHILE, DO UNTIl, or DO FOR loop.

Repetition, in this sense, means that the loop control variable uf any} _supdated, the ter-
mination condition (if an_ _ is rt,-e_'aluated, and _I"the conditions for termination are not met
then control is passed to the fi_t statement of the loop body. Thus, the presence of a
RFPEAT statement in a loop does not change the number of iterati.ms of the loop, but
does determine whi,'h portion of the loop b_,xty ts executed on each Iteration,

EXIT and REPEAT are controlled fort,is of GO TO, The location to whwh control is

transferred ts defined by the structure of thc program. Thu_, whenever these ,,atements are

used. their yhm'tton._ aP, what their names Imply. FXIT al_,ays "'gets out o£" a compouttd
_" statement. REPEAT al_ays repeats a loop. GO TO. on flit' ot,,er hand, has a variety of
• I functional uses. When GO 1"O is used. the reader must find the corresponding label to gain

any idea of the effect of the (;O TO.

The follo,_'ing code fragment uses arrows to illustrate the transfer of control caused by
EXIT and REPEA !,

:L

_t

J:

1980004512-087

f XITa,JRI'tV'.41 3.13 A

M 5_':r/.E rLO_:
M r I-'C."_-' '1;
M _ECL_C'F I.'4TE_EP,
M I, J, K, L, M;

rf i._00 (.'_lxi"L FAL.':,E:

I1 J = O;

M [':Cs,
N ELSE .',
/1 [XIT ;-- : - ,

" k]

tt fC 0 K : 1 TO l C;

hM [LOOP3, CO FC_IFJL::OM'Tt_LNH',"I,_N; ,_,'I : : " : RER[kT L_C_':;
M EL._E

| M Eh'_1;
M EF._I; = ,.

M CLP_E $:,'PL[_F LO_;

Since RI:PEAT apphes only to loop,;, tts effect ts not changed by placing ,t in a simple
DO . . END group. This ti.:t cart be used to make tile rAN SUM program more rnfortlla-
tire ,is showrl belt)v;'

IF MOI)tTOTAL SItlFT.PI) < ,001 TiiFN DO.
WRIIF(LIST) "I'ANt;FNT UNDFFINFD':
RFPFAT, /* RI-AD ANOTtt!R AN(;LI. */

FNI).

E_erci_es ?

5.5A Given

a) l)O FOR X = I IO 100, -:• $

,f

FXIT:

it-':

Jr-

t_

1980004512-088

i

L_

3.14 Loop_

and.

b) DO FOR X -- I TO I00;

REPEAT. "'

END.

Assume that the EXIT and REPEAT are executed in some conditional branch s,,me-

ttme during the execution of the loop. These are the only EXIT's and REPEAT's in
tile loops and there are no branches out or' the loops.

What can be said about the value of the control variable 'X' in a) and I_) above when
the first statement after the END is executed?

a End Of Chapter Problems

5A Write a HAL/S program to use Simpson's rule to approximate the area under the

curve y = _ using smaller and smaller segments, delta• The process continues until
the area resulting from (delta/2) size segments differs from the result obtained using
delta by less than EPSILON.

Read the limtts of integration from channel 5 in scalar form, and write the resulting ,,.
area out on channel 6.

Remember, Simpson's Rule as:

FINAl delta • :"
f(x)tx=_l f(initial)+_ t'_INITIA L+DE LTA)*...

INITIAL " +2:O I', AL-DELTA)+f(F1NAL)]

Include any assumptions you make.

5B Consider the following code:

•
J PROBLEM_PROG: PROGRAM ;
• • ' DECLARE INTEGER, k

NUMBER INITIAL(3),
DIVIDER;

TEST INIT: DIVIDER = 2;

i TEST: IF MOD (NUMBER, DIVIDER) = 0 THEN GO TO LOSE;
t

• DIVIDER _ DIVIDER + 1; •

,!_ : IF DIVIDER = NUMBER THEN GO TO WIN;
GO TO TEST; "'

LOSE: NUMBER ,, NUMBER + I;

IF NUMBER • 500 THEN GO TO DONE:w

' GO TO TEST INIT;

• o

q9800045 q2-089

I- VI7"atMRIPI'AT _.15 '_

WIN: WRITEr6) NUMBER,
NUMBI=R= NUMBER + I:
IF NUMBER < 500 THEN GO TO TEST INIT:

DONE:CLOSE PROBLEMPROG.

MODlta,b) yields a(mod b), tile remainder when tile greatest integral mulhple of b

less than a _ssubtracted from a.

a) Whatdoes this programdo':

b) Rewrite it using do for . end loops so that the programis easter to read.

1980004512-090

Arrays of'Integers and Scalars 6-" !

6.0 ARRAYS

; An ARRAY is an ordered set of variables of identical type which are accessed by a single _

name. Arrays are completely distinct from vectors and matrices. The primary uses of
ARRAY_ in HAL/S are: "-'

f

I) For perionning identical operations on similar data as in:

DECLARE IMU_ STATUS ARRAY(4) INTEGER;
DO FOR I = 1 TO 4:

IF IMU_STATUS$1 NOT = 0 THEN CALL RING_BELLS;

END; ._

2) For maintaining a history of previous data values as in:

DECLARE ALT HISTORY ARRAY(100) SCALAR DOUBLE;

CYCLE = CYCLE+I;
a ALT_HISTORY$CYCLE = NEW ALTITUDE;

and

3) For maintaining tables of all sorts, as in:

DECLARE DAYS_PER_MONTH ARRAY(12)
INTEGER INITIAL(31,28,31,30,31,30,31,31,30,31,30,3 !):

HAL/S allows arrays of any data type; however, the mo_t frequently used are single ,_

dimensioned arrays of INTEGERs and SCALARs like those in the examples above. There- ?
fore, the basic concepts of declaring and subscripting arrays will be thoroughly examined
in this context before arrays of other data types and more advanced array operations are
discussed,

6.1 ARRAYS OF INTEGERS AND SCALARS

Arrays are created using the ARRAY keywo_xi in the DECLARE statement; a parenthe-
sized compile-time expression or list of expressions must follow the ARRAY kcyword to
denote the size of the array. Arrayness is an attribute of a variable of some data type rather i
than a new type. Hence. given the statements:

• ,' , DECLARE A ARRAY(3) SCALAR;
DECLARE V VECTOR(3);

the data type of A is SCALAR and the type of V is VECTOR even though both consist of
. three single precision SCALAR elements.

.. Following the word ARRAY is a pan:nthesized list of dimensior_. Each dimension is

:_ described by a compile-time expression, which is the size of the dimension and the index _.
of the last element. X, Y, and Z in the next figure could be REPLACEd with any integral
value up to an implementation-dependent limit: t

Y,

1980004512-091

_ 4,mrs

ARRAY (X) ARRAY (Y,X} :

1 X l X

I ! 1 [1...I I !] _ff.t---H

ARRAY (Z,Y,X)

Z

I |IIIII I II

IIII[II _'.+_ t

J Y_liI! 11 I II I il
1--------_ X

Array+_arc imtiah+,edm the _me manner :isVFCTORsand MAFRIXs;a list of'.':,lues is
provided m £.lrenlhem,+lollo+,mg the keyword INI I'IALor CONSFANi. l'he sw¢ial charac-
t_,rs" and # ma._be used for partiMhutt.Jh,'ation Jnd rel_titton as bcl+orL". Ihus,

I)FCI+ARF A ARRAY(._) INI'Ft;F R INITIAl ,3.._,14.'+,0l,

cnyates

• P: A _ 13._,14,2,0i
• 4'

Cllld,

III:('LARF B ARRAYtl2+ SL'ALAR INIllAl_tO,I, I.SQRTt2),

._ SOR l't.L4-_., _,

"_' creatrs
i

#,
r

g

i -e

] 9800045] 2-092

Arrays of Integers and Scola_'s 6-J

'5

Since it is often desirable to initiadze an entire array to the same value, ltAL/S also allows an
initial (or constant) list to consist of only one value; in this case every element of the array
is set to the value provided. Thus the forms

DI_,CLARE X ARRAY(5) INTEGER INITIAL(5#O).

anti' ,_

DECLARE X ARRAY(5) INTEGER iNITIAL{O):

are equivalent. Eillally. the At..._Y attribute may also be "factored" or _pecifled only
once in a DECLARE statement which creates r.;ultlple arrays as shown below

DECLARE ARRAY{3L
• (;YRO iNPUT INTEGER.

ATT RATE SCALAR DOUBLE, _

SCA I_E CONSTANT(.OI3,.026,.OI3).
t

"rile arrays declared above might _rve as tl.¢ inputs and outputs of a simple program

which dens liaear scaling of data read from an acceleroldetcr assembly. Assume tha_
(;YRO_INPU! contains three values which represent the rates cf vehicle rotation along the
pitch, roll, and yaw axes. A simple routine to convert the data {o more convenient units and
data repre_ntation might be:

DECLARE N INTEGER;
DECLARE BIAS SCALAR INITIAL(57.296):

DO FOR N = I TO 3;

ATT RATESN = SCALESN GYRO INPUTSN + BIAS;
END;

In this example, the various arrays are sub_dpted in the same fashion as VECTORs. and.
in general, the same rules apply: The subscript of a one-dimensional array may be any

arithmetic expression which evaluates to a number between one and the site of the array. ,t•
j If the express_on does not produce an integral result, it is rounded to the nearest integer.
• #' An array element, such as ATT RATES1 * or SCALES{N+2). may be used in any context

in which a simple variable of the same data type can be used. For instance, given two
SCALAR ARRAY(IO)'s. A and B. the following statements are all legal:

4,. A$1.A$2 = SIN(AS31;

A$(B$(A$3)) = 29; *
DO UNTIL AS1 = A$2:

", IF A$N < AS;,N+I)"/'HEN ..,

_,,¢"

•*" " *Some readen may wish to reviewthe discumon of stnllJ¢and multi.llneformats tnChapter2.

_ r

p

1980004512-093

6-4 Arrays

-" Anotherexampleof the ._seof arraysappearsin _.xamr I. This programdetermines
the minimum,maximum,and averagetime requwedto inw , a 5x5 MATKIX containing
randomdata:

It ItXAMPL[t :
M F_G_AM;
M OEttAe'[n PUtl_ZX(S, S);
M D[CLA¢'IE N MAY_ZXIS, SI;

M DI[CLAPIt T]_M[AR_'AYII06_ S_._ALAHZNZTXAL(O);
M OitCLAPIt SCALAlt,
M TMZN* TMAX, TMItAH;

M OItCLAIWf le,9'[Git I,
M Z, J, K;

O0 FOre I : I TO lO0;
M DO FOI_ J * | TO S;
M DO FOIl K • ! TO $;
M N • R$,e_OOel;
S J*K

M [NO; +,

II Tl;,*it • IIUNTXMIt;
S Z

M s 11 ;
N TINIt = tlltq'TIMit - TIMIt ;
S ! !

el fNO;

C _ rlDOCitSS THIt HUNOIPEO-SUmLI[$ XN THIt UIAY I1,][NI[)

N TrlAX, TFRJJ_, Tit]iN • 1,1Mit ;
S 1

fl O0 FOIl It • t TO |Oft;
N TMI.AN • TIqIJIH $ r][IqC l
S l

I1 |P 1,1ME > 1,flEX 1,HitN
S Z

M Trttx : 1'][11(;

J II]rlI TIME < Im|N THItN

• _' S l

rl mTN : TII+I[I
S !

" N YflitlN • TII / loll

H C LOSEr lXJIJtQLIt.i I

In aldsexample,two previouslyundefinedfunclk)ns,RANDOMandRUNTIME areinvoked:
RANDOM is i_d to set the matrix to a setof pseudo-nmdomnumbers,andRUNTIMF."
relumstheval_, • *hesystem'sreallimedock.

tie"

4

f,

1980004512-094

z

ArrayJ o[InWge. and Scalar: 6.5

it may be noted that the rain. max, and meat. could have been computed within the
main loop without saving all of the values in an array. Saving the data allows additional
statistics, such as the median to be compu*ed (see exercises). This method oi obtaining

timing data may be inaccurate if the time required to read the clock is signi;icant.

HAL/S provides for mult=-dJmensio==alarrays: These are typically used for ease of
subscriptingand to contribute to the readability of a prci_.".m by logical grouping of data.
For example, suppose that instead of one accelerometer assembly as described earlier,
there were four of them. for reason_of fault-tolerance. Then, we might declare the input

data asa two-dimensional array.

DECLARE GYRO INPUT ARRAY(4,3) INTEGER; ,,

Now. GYRO INPUTS:,_3,2) is the second measurement from the th:rd unit,
GYRO INPUTS(I, I) is thz first measurement from the Fur=!unit, and GYRO_ INPUTS(I,*)
is all the data from unit one, i.e. the tame three measurements we had before. The use of
an astcrigt to indicate "'all of a particular dimension" is the tame as in VECTOR/MATRIX
subscripting, the #, TO, and AT forms also apply. Thus, GYRO INPUTS(*, 1) is an array

a containing the first measurement from each of the four accelerometer units, and
_YRO_INPUT$(2 AT # - I,*) is a 2x3 _rray containing three measurements from each of
the last two units. In the next sectior, we will s_e how these complex subscripts =re used,
but first we shall examine the genelai form of multi-dimensional arrays (and finid_ process-
ing the redundant accelerometer data along the wa_,_.

The maxtmum number of dimensions in an array depen_ on the particular HAL/S
compiler in -se. All present HAL/S compilen allow from one to three dimensions, in
declaring an array, the number of dimensions i= denoted by the number of expreuions
in parenthesis following the keyword ARRAY. Thus,

DECLARE A ARRAY(5,9,4) SCALAR,
B ARRAY(180I SCALAR;

creates two arrays of 180 scalars, but A is 3._tmcntional while B is linear, The tint element
of B is B$ l, whereas the tint element of A is AS(I, I, I). Initialization works the same as in

=ingle dimensional arrays: either a list ofv|lues contalnin| one value pet, array element may
be provided, or a single value may be aUilgned to all elements. Thus, the array A may be

initialized as:
.

,t

• 4. DECLARE A ARRAY(5,9,4) INITIAL(O);

or'

DECLARE A ARRAY(5,9.4) INITIAL(I _ "_ ,

If we want A to be all zero except that A$(*,*,3) = - l, the following initial llq ca, be
"_ used:

INITIAL(5#(9_O,0,- 1,0)))

1980004512-095

6-6 A tray#

To undenttandwhy thisis correct,it is necessaryto know that HAL/S storesarrays_r_
"Row-maim order". Thismeansthat thevaluesin the i_itial listareassign'din the follow-
mForder

A$ll,l,I) = value]
AS(I.! .21 * value 2
ASI I.I.3) " value 3

AS+ I.I.4) - value 4

ASti.2.1) - value 5

AS(I.2.2) = value

et cetera

The way to rememberthis fact isby notmF lhat the right-mostindex is incrementedth=
mostrapidly.

Now, Ze illustrate Ihe usefulnessof multi-dimensionalarrays,we wdl reeurnto the
a examples ol four accelemmeter assembbes. The entire ret of twelve measurements could

neprocessedasshowr,below:

M Itll0GItalq;
n 0[CLtl| |Yl_ INTUT allltVl4, 3t INTISIHI;
Pl OECLAI| ATTolIT| ,U114114, 3) fllCILAqP_
II 0iCLAIII[SPtL| almiyl $) CQI,_TANT1.0|3, .ll_t, ,ill]I'
H 01CLAII! 82tS SCALJUIINZTIAL¢$Y.2q_bl;
/1 DO FIll T|pqrcJIAIIr | • | T0 Q|
H 00 P_W T|HI,O_AIT J • I TO $:
N ATT ilATl[• IVlH}.IP_ItU_I Kit| * It|AS!
$ I,J i*3 J

Pt l_'-
n INO_
n Ct_l lXtMWLI.I l

• p

,jr
In this code, SCALE ts still declared as a array of tAr¢¢ Since the four instruments are

Jdentka t, there ,s no need Io keep four sets of ,,'ale factors. Note. however, thai if

GYRO_ INPUT ;rod been declaled as a linear ARRAY(I2I. we would have to either make

the SCALF: array also of dze lwehe, or introduce moire ¢omplelt ,,ode to _m .e the

F film scale factor with each of Ihe twelve m_.umremenll. Thus, _ two :ttmemu_mutl arTay
_, may be a mechamismfor perfoming identical +:m_atiom on a set of timilax linearamray_
t just ar a linearanay may be used to perform identical operations on a ict of ttmihurmlelevs

or scalank

It.l.I Addak_ul Eumpl_

I) Do a matrix multiply. MI " M2 M3, wt h MI, M.*and M.I declaredas **RRAYa

',._r" r_thertlumat matrke,.

t

1980004512-096

, irr,+ +,,! I.h ¢,,r; ,sin/5_+llur_ 6 "

?

M [ki'+'_'z [$:

M '+1, M..',1"13;

f'f _r"_, COL:
On fO: PC:,_ = 1 TO $.

M O0 FO'7 COL • 1 TO 3;
M IMI • M_ M] * MZ MI * I'I?. HI ;

S IIL'_, COL RCU.1 |*COL ROW.2 _.,COL lion', $].COL

n [P_;
;I [h'O;

M CLC._It |AAMllW.[.] ;

') Rt)t,Jt¢ the +.ortl¢rlts of Jh .I,_+ uf flV¢ _,g+',l+_P. :,, sllo+A'll h), thv lJhl++tr,.lll+,)n

• ii
a

• 4

M ItXAPt_LI.+, :
r9 P_ ++.+-"M' ;
I'I bECLAII • lllSi+vlSl "JClt+tm P_OU_LI[;
M _ttl, ael TI_P .+C_L£1 _C¢.3LE ;
M t[+_;* i • ;
S I

i,

• M O0 ItOI tlI"P:+£1DV t + I +0 +;
/I l • $+ ;
S t t_l

M I +_ ;
Pt t • ?IMP;
S I

i+.l M CLOS_' IXIMPL_' 4;

r

+, I

1980004512-097

6-8 ,ays _"

3) Find the square root of the mean of the squares of all the values in an array of

1O0 scalars:
.c

rl EX,_MPLF,_5 : I
M I_ROf,R_.PI;

M O;CLARE A APRAYI|O01; !
11 DECL._I:E RM5 SCALAR;

M _.rCLARE TOTAL SCALLR OOUIgLE ZNSTZAL(O,
M no FOR TEI_,T'ORAR¥N : I TO 100; ?

M TOTAL = TOTAL • A ;
s H i

M Ero; I "_
M R_,S = SqPT! TOTAL / 100); IM CLOSE EXAI_,,PLE5;

Exercises

6. IA Which of the following d_clarations lists are legal? _!

If they are legal, what do they create.°

If not leg,_l,why not?

a) DECLARE X INTEGER INITIAL(3);
DECLARE LIST_ONE ARRAY(X) SCALAR INITIAL(3#.I);

b) DECLARE X CONSTANT(4);
DECLARE ARRAY(X), ..

LIST_ONE SCALAR INITIALI4#.2),
LIST_TWO INTEGER;

c) DECLARE LIST TtIREE ARRAY(18) SCALAR INITIAL(iO#.I,*);

d) DECLARE LISTFOUR ARRAY(9,3) SCALAR iNITIAL(3#.I); ._
J

. 3#(3#.2),*);

e) DECLARE LISTFIVE INTEGER ARP '_Y(6);

"t

A

!

, r_Y

. -o _-z._

,/

] 9800045] 2-098

Arrays of Integers a_ ' Scalars 6.9

6.]B a) in example I in the text, the mihimum, maximum, and mean times required to
invert a 5x5 matrix are computed. Modify the code of the example to include a
computahon of the standard deviation, defined as follows:

v_ilX i -Xl-

where X is the mean value of the time. and n is the number of samples.

b_ An alternate definition for standard deviation, easily shown to be equivalent
to the above, is:

o = I" (_iXi)"
n

Using thisformulation,i,'is_ssibleto compute the standarddevlation"#ithout
J saving all the time values in an array. Rewrite the program of part a), eliminating the

array of time values. Is it possible to compute the median value without saving all
the values?

6.1C In example 2, GYRO INPUT and ATT RATE are declared ARRAY(4,3).

The text states that if these variables were declared ARRAY(12) either SCALE
would have to be declared ARRAY(12) or more complex code would be needed.

Keeping SCALE declared an ARRAY(3), modify the code given for example_2

such that GYRO_ INPUT and ATT_RATE are declared ARRAY(12), while still
keeping the basic strc_.ture of the code given.

6.1D Insteadof ritemodificationof the arrayshownin EXAMPLE4, writecode that
willperformthe followingmodificationof arrayA.

!

f

6.10 Arrays

: 6.2 OPERATIONS ON ENTIRE ARRAYS

Most of the examples in this chapter have relied upon the iterattve DO FOR loop to
sequence through the elements of an array. Commonly. the loop has been used to apply
one statement to each array element, i.e.

DO FOR i = 1 TO ARRAY_SIZE BY 1:
(statement)

END

Since this type of" operation is so common, HAL/S provides a mechanism for combining
these three statements into one. For example, to add one to each element of an array
could be coded as follows:

DECLARE A ARRAYtI0) INTEGER.
DECLARE ! INTEGER:

a DO FOR ! = I TO lO;
ASI = AS1 + 1:

END:

or, by eliminating the subscript and the loop. could be recoded as shown below:*

DECLARE A ARRAY(IO) INTEGER;
A -- _+1;

This assignment is an example of an arrayed sta'ement: A statement which operates on all
the elements of an array. Here the effect is the same as in the form with a loop, i,e. each
element of A is incremented, In general, an arrayed asst$nment statement r_sults whenever
the target 0eft.hand side) of the assignment iz an array. There are two possibilities for the
expression to the right of the = sign. it may be either a simple expre_ion (e.g. "1" or
"SQRT(3)") or it may be an arrayed expression (e,g, "[A] + I" or "[A]/2"). In the former
case. every element of the target array is set tn the value of the expression. [n the latter case,

one additional rule applies: the arrayness (number and size of dimensions)of an arrayed
expression must be exactly the same as the arrayness of the variable to which it is assi_ed.
This must be true because each element of the target array is set to the ¢orrespotzdmg

" _ el, ment of the arrayed expression. An arrayed expression follows the same rides as an
• ¢ mtarrayed expression except that some or all of the variables are arrays (of identical

dimensions). Thus, if

:: A = CX 2 + DX + 5;

z is a legal HAL/S statement involving simple variables A, C, D, and X of any data type,
then:

[At • It] [X] 2 + D[X] + 5;

._¢" *TheHAIJ$ compihtannotatesarrayswithsquarebracketsintheoutputilstlnlt.Thus,theassignment
statement would appearas [A] = [A] + 1',

,_l# "

1980004512-100

Operdtlr;lls r_t_ A'llflrc 4rral s 6"11

where A, C and X are identical arrays of the same data types, is also legal. In general, all of
the arithmetic operators (e.g. +. **. /, etcA will accept either two simple variables, a simple
variable and an array, or two arrays of identical dimensions.

Note. however, that the machine code generated to correspond to an arrayed statement
still contains a loop: th_s fact is unportant when assessing the efficiency of a computation

The following shows how the partition form of array subscripting is used. Given:

DECLARE GRID ARRAY(6.6) SCALAR:

a vanety of re-arrangements of tile array can be done in a very few statements:

I'_ Set the top half to the bottom half:

a GRIDI TO 3.* -- GRID4 TO 6.* :

2) Set the upper left quarter to the lower right comer:

GRIDI TO 3, 1 TO 3 = GRID3 AT 4. 3 AT 4 :

3, Set the first row to Lhe sum of the other five:

GRIDI. , --- GRID2 , + GRID3 , + GRID4, +

GRIDs,, + GRID6, :

4) Set the border to zero:

GRIDI , , GRID, 6 , GRID6, . GRID, i -- 0:

This last example is a multiple assignment statement, to which one additional rule
apphes: If one or more of tile target variables in a multiple assignment statement is an
array, then all of the target variables must be arrays and of identical dimensions.

One caution is in order regarding assignments hke these. Consider the assignment.

GRIDS(I.2 TO_ = GRIDS(1.1 TO_- I):
•

J

• 4 This statement m_ght be intended to shift the top row one position to the right. Instead. it
sets GRIDS(1,2 TO #) to GRIDS(1,1): the first element is propagated throughout the tow.

The reason can be seen when the arrayed assignment is unravelled:

._ GRIDS(1,2) = GRIDS(i,1):
GRIDS(I,3) ,, GRIDS(I,2):

This adverse effect can occur whenever a partition of an array is set from an intersecting

partition of itself. Such assignments should always be checked by partially expanding them

Jr t" by hand.

4[_ "Vr

¢

p , •

1980004512-101

6.12 Arra,s

Using the feature introduced in this section, we can make the redundant accelerometer ,.
example of Section 6.1 more compact:

2
M E)_AMPL[_6:
M r'RC.q_!.'1;
M DECL_,R[ARRAY{4. 3),
M G'rRO_INf'UTINTEGER,
/1 ATT_RAT[SCALAR;
M DECLARESCALEA2RATI3! SCALARCONSTANT(.015, .026, o013);
M DECL_PE EIAS SCALARCP_dSTAI_T|_7. :¢)b) ; /.
/1 DO IrO0 T[M_:C::;_RYDE'viCE = I TO 4;
/1 [ATT_RAT[] = [G_O INPUT] [SCALE] * BIAS;
S DEVICE,* OEVZCE,m

M [[',"3;
M CLOSEEXAMPLE6;

Here. we have converted an unarrayed statement in double loops to an arrayedstate-
• ment in a single loop. Since the SCALEarray is of size 3 and the other arraysare 4x3. we

cannot eliminate both loops without getting an arrayness mismatch in the assignment '.
statement. But it is possible to have an assignment statement with more than one dimension
of arrayness as long as all of the variables match. Thus, v,e could compute a set of four
attitude arrays:

DECLARE ATTITUDF ARRAYI4,3) SCALAR:
DECLARE ATT RATE ARRAY(4,3) SCALAR:

from the attitude rates tna singlestatement merely by"

[ATTITUDE] = [ATTITUDEI + [A'IT RATES DELTA_T:

where DEI TA T is a SCALAR representing the time between samples. This one state-
ment is functionally the same as:

ATTITUDES{I,I) = ATTITUDE$(I.I) + ATT RATES{I,it DELTA T:

ATTITUDES{I,2) = ATTITUDES(I,2) + ATT RATE$(l,2) DELTA T:

ATTITUDES(I,3) - ATTITUDES(I,3) + ATT_RATE$(I,3_ DELTA._T;
J

ATTITUDES{2,1) = ATTITUDES(2,1) + ATT_RATE$(2, ! _ DELTA_T;

!'

_- ATTITUDES(4,3) = ATTITUDES(4,3) + ATT_RATES(4,3) DELTA_T;

_' (a total of twelve simple assignments).

In addition to arrayed assignments, HAL/S also allows arrayed comparisons. It is

possible to compare an entire array or arrayed expression, either with a simple variable

or with an identically dimensioned array or arrayed expression. For example, we could

create a 4 by 4 array showing mismatches between the four sets of ATTITUDE data {each
an ARRAY(3) partition) as shown:

#
, r,:

.!

1980004512-102

Operations on Entire Arrays 0.13

M EXAflP£[_?:
H PPOGRAM;
M D[CLAQ[ATTZTUUE ARRAY(4, 11 SCALAR;
H D[CLAR£ MI$_.TCH ARRAY(_*, 41 INTEGER;
M r_[C LAg[XNTEG[R*
M l, J; '_

M O0 FOR I = 1 TO 4;
M HXSMATCH : 0;
S I,I

M O0 FOR J = I * I To 4;
h IF IATTZTUDEI -: [ATTITUO[] THEN
$ I,_ J,Ip

M MISMATCH , MI,TJffATCH = 1;

S J,I Z,J

M ELSE

rt MISMATCH , MZ$ffATCH : O;
S J,I Z.J

M I [h'O;

M ICLOG[EXAHPL[_?;

In this example, the statement:

"IF ATTITUDES(I, e) -I = ATTITUDES(J,*) THEN . ""

is an arrayed comparison: Each element of ATI'ITUDE$(I,*) is compared with the corre-
sponding element of ATTITUDE$(J,*). If a,.v of the pairs of elements is unequal, then the
comparison succeeds and MISMATCH(I,J) is set to I. Thus, this statement is functionally
equivalent to:

IF (ATTITUDE$(I.I) 7 = ATTITUDE$(J,I)) OR

(ATTITUDES(I.2) -7 = ATTITUDES(J,2)) OR

(ATTITUDE$(I.3) -I = ATi'ITUDE$(J.3H THEN,.,

Two arrays are considered unequal if they differ in any element; they are equal if they do
m_t differ in any element (i,e. they are equal if all elements are the same).

• _ It is also possible to compare an array with an arrayed expression; for instance the
a statement:
• I

'*IF ATTITUDES(I,*) = (ATITrUDE$(2,*) + A'VrlTUDE$(3,*)) /2 THEN . "

" would determine whether or not the f'mt set of readings was equal to the averace of the
second two. Finally, an array may be compared with a simple variable or expression, e.g.

t IF [MISMATCHI 7 = 0 THEN ,..

or

IF AI"FrrUDE$(2 TO 4,1) = ATTITUDES(I,1) THEN . . .

r£" /

s* "

r

._ o-,

1980004512-103

6.14 Arrav_

Regardlessof the data types involved, the only comparisons which may be made between
arrayed operandsareequal (=) and unequal(-]=). This restrictionis madefor the same
reasonas,n VECTOR/MATRIX comparisons:The question,"Is A - (i, 57, 3) greaterthan
B - (., 4, 3)?" hasnoclearanswer.

Exercises

b.2A Whichof thefollowingarelegalarrayedstatements(expre_ons):

Where:

A ARRAY(5) D ARRAY(5,5)
B ARRAY(5) E ARRAY(IO,IO)
C ARRAY(IO)
X INTEGER
Y SCALAR

• a) A = B:

b) A = C:

c} A = X;

d) D$(*,5)= B:

e) D$(5,*_ = Y:

f) E$(5,*) = B:

g) E$(5AT 2,3TO 7)= D,

h) A, B = X;

i) A,Y = X:

j) C$(5 AT3) = A + B;

k) C$(5 AT4) = A + X:

I) C$(B) = X:

m) DO WHILE A > X;

n) DO UNTIL A - B;

o) DO UNTIL A -I • C;

_" _ p) DO WHILE D$(2 AT 2, 2 AT 3) - E$(2TO 3, 3 TO 4);
_4

q) DO WHILE D$(*,3) - A',

r) DO WHILE A$(I,I) = X;

s) DO UNTIL A - C$(5 AT4);

r t) DO UNTIL B • E$(7,6TO#);

- 6.2B What are the major benefits of the ability to do operations on entire arrays in one
: line of code?

'

I

tb

1980004512-104

Arrars o] Other Data 7 vprs 6-1._

6.3 ARRAYS OF OTHER DATA TYPES

So far in this book. five data types have been introduced. INTEGER, SCALAR. VEC-
TOR• MATRIX. and BOOLEAN. An array of any of these types can be created m a manner
completely analogous to the INTEGER/SCALAR arrays already described. For instance,
one array of each type can be created in a single DECLARE statement:

DECLARF ARRAY(I0).
I INTEGER,
S SCALAR, _.
V VECTOR,
M MATRIX.

B BOOLEAN,

Each of these arrays consists of ten array elements; each element behaves in the same way
as a simple variable of the same data type. In the case of an array of VECTORs (e.g. V

' above)• each array element in turn consists of several components (in this case, three
_alars). Ilencc, tf V were to be completely initialized. 10 x 3 = 30 values would be re-
quire& As in INTEGER/SCALAR arrays, the INITIAL list may contain either a value for
ever_ array element or a "single" value (t.e. mittahzation for one VECTOR or for one
MAi'RIX). For example.

DECLARF A ARRAY(.') VECTOR INITIAL(I,O.0,1.O•OL

creates:

A _ ,

as does.

DECLARE A ARRAY(2) VECTOR INITIAL(I,O.OI;

ana,
j

• • DECLARE M ARRAY(3) MATRIX(2,:') INITIAL(1,2,3,4,5,6.7,8,q,I 0°1 I, 12),

creates:

* (I:lI:M-= 3 4 ' 8 ' I I

The same initial list could also be used to initialize a three by two array of 2-VECTORS:

DECLARE X ARRAY(3,2) VECTOR(2) INITIAL(• _"I,,,3,4,5,6,7,8,9,10,1 I, I -L

t

1980004512-105

6.16 Ar_y:
¶

But in this case, the layout of the data is significantly different:

This is not merely • distinction of graphical representation. The concepts of data type
and arrayness •re completely independent. Thus given: ._

DECLARE M MATRIX(2,2) INITIAL(a,b,c,d);
DECLARE N MATRIX(2,2) INITIAL(e,f.g,hL -__
DECLARE .A ARRAY(2) VECTOR(2) INITIAL(e,f,g,h);

the assignment statements,

and

IA] = _t IA|;

perform very different operations. "N = i N;" is • simple matrix multiplication as described
in Chapter 2, but "A = M A;" is an arrayed statement; P does twc (the arrayneu) multiplica-
tions of a vector by • matrix. The results would be:

" [:]N • ae + blg af + bh
e + dlg cf + dh

'A' = (I: + bfl I •Ig + bh])
+ df ' cig * d

As indicated above, arrayed statements may be formulated from arrays of VECTORs
and/or MATRIXes accordinig to the usual rules: All of the V! _-"TOR/MATRIX operations

• tt may be applied to two simple variables (or exprew/ons), to at. array and a simple variable,
; a or to two arrays of identical dimensions. To see how arrayed operations on these data

, • type•might be used, consider the following situation: An aircraft has a position VECTOR,
MY_POSN, and access to an array of five other vectors, [POSITIONS], which gives the
locations of five other aircraft. The code below, which executes every DELTA_T seconds,
computes the velocity of each aircraft, the distance between each aircraft and MY_POSN,
and the rate of approach of each toward MY_POSN:

-;. i ?
¢

1980004512-106

4rrav_ _f Other Data Trpes 6.17

, , _, ,- , m

M ; [XA_rLE_8:

M! ,;_ C.g? '.._I;DEz"L*'-'E _O$ITZC".IS A_OAYISI VECTOr;
M i OECL_[OLO PCSq LRRAYI5) VECTDP;
M D[CL'_ r 4"PA'v qS I,
M VEL_CZTT VECTOI_.
M _5TA_.CE _CAL,IE*,

M i Aia;';'C'-'C__PaTE SCALAI_; /_THI' ANS_ERSu/
, OECLA=E MY r_d V[CT2_;
H O_CL._;'E [:ELTt._T SCILAIP;

C O_'TAI._I PCStTI(_*IS Fg'ON OUTSIDE 41P ¢o

E - - -

n [VELCC_Tf] = IIPOsZTIOhlSI - [OLD POSt;l) / DELTA T;
E

M [D_STA,';_-E] = ABVALI[PO$1TI_S| - MY_POgN);
[- . .

M [ArF;CL'.CH_gATE I : (VELCCITT I . I.INIT(I POSZT[_ I - MY_POgN) ;
[
M [OtO.PO"_q] : [POSITIONS];
M CLOSE E..-'.":._'Lt B;

a

Each of these assignment statements has an arrayness of five. The second one. for

instance, first subtracts MY POSN from each of the five VECTORS m POSITIONS. pro-
ducin_ an array of five "'distance" VECTORS. Then the ABVAL timer]on operates on
each VECTOR m turn producing a scalar distance which Is stored into the corresponding
element of DISTANCE.

So tar we have been deliberately avoiding any subscripts of arrays of VECTORs and
MATRIXes: Thns is because a long list of subscripts can be rather confusing. For instance,

a three dimensnonal array of MATRIXes could have up to five subscripts; Given:

"'DECLARE M ARRAY(2,3,4) MATRIX(5,5);'"

one might expect the first MATRIX to b¢ referenced as "MS(I,l.l.*,*£' which is fairly
complicated, though more comprehensible than "M$(J+l.2 AT J- I,*.3 AT #-4.2)." To

• _ aid in dealing with these difficulties. HAL/S makes a distinction between array subscripts ,

a and component subscripts. The first three subscripts of M are array subscripts and the last
• • two are c'omp(ment subscripts. To make subscript expressions more readable. HALTS en-

forces the following rule: Whenv;er both array and component subscripts are applied to a
variable, they are separated by a colon instead of a comma. Thus, the first MATRIX in the

,_ array M i,, actually "M$(i,I,I .*,*)". Using this syntax, we can re-write the second assilm-
merit state,4ent from the example above the hard way; that is:

[Distance] = ABVAL([POSITIONS} -MY --PO.rN);

is equivalent to.

1980004512-107

6.}8 Arrays

DISTANCFI = SQRT(APOSITIONSS(I;I)-MY_POSN I b**2

* (POSITIONSS(I:2)--MY POSN2)**2

+ (POSITIONSS(1:3)-MY_POSN3)** 2)
DISTANCE2 = SQRT((POSITIONSS(2I)-MY_POSNI)*'2

+ POSITIONSS(2:2)- MY_POSN2)'" 2

+ POSITIONSS(2:3p--MY _POSN3)**2);

DISTANCE5 • $QRT((POSITIONS$(5:I)-MY_POSN I)'* 2

+ POSITIONSS(5:2)-MY_POSN*)**2

+ POSITIONSS_$:3_- MY_POSN3)**2);

Aside from the use of the colon, all of the po_/bilitics for $ubscriptinllstil, apply: all
of the TO, AT. and * partitions may be used on either side of the colon, any arithmetic
expression may be used as a subscript, and a subscripted variablemay be used in any con-
text in whicha simplevariableof the same data type could be used.

The data wPe of a subscripted arrayis not necessarily the sameas the data type of the
entirearray. Fc_rinstance,gwen;

I)ECLARE A ARRAY(3,2) MATRIX;.

A is a two.dJmen;;real arrayof type MATRIX,*

AS(I,*'.0.*) is a one-dimensionalarrayof type MATRIX.*

AS(I.*: 1,0) is aone-dimension•1array of type VECTOR,*

and

AS(I, t. I, !) h.• stnlle SCALAR.

- •. # It _,,mor_ common; to reference on entire arrayelement or tub.re.raythan it is to t_fer.ence a component of an _,,,yayelement or tome sub4rray of partitions, etc. Therefore,
• • ' HAL/S pro_id_J a more compact form for referenctnlgan entire element of an may to

which componant mtsJcrtptinllco•k4 alto 8PI_Y:When an entire armyelement is Jelected,
the ute_tka (compo_it subecripts) to the rilht of the colon may be omitted. Hence,
the t'lrstMATRIXin the lurrayA above can be referenced as "AS(I,I:)". The convenience

_ of this form of subecriptis JlJustgatedby the ptoipllmbelowwhichprocessesaftarrayof
-_ "N" 3-VECTORsand swresthe three hxVtnllti:e 8reutest malnitudes in a second 8n_y:

Arru_ _ o/Olher Det_ Tz pes _-19

f¢ I "" "l| 9:
rl F_L' :* ' r'_';
e' eICL:=| V A_'ATtq't_D VICTC_IdI):

rl _ZSLJe_. e! ZhT[G[II; /0P_'_91¢_ OF $¢TI_e,L I[PITll[I[$ IH Y**

O0 _'IEI_TEl 'C=Ae? J • I TO];
II * -
rl Zl r ,t_'.'JLIV " • JII)VAL(BIIIrNAI|I) THIH
S Z; J:

I¢ _;
Pl ll_ ro_' 'rl_e_'Allt K • J * I TO $;
[* .
PI tt_THII[| • IZSTNfII[| ;
S X: K-I;

n lpl0;

pl |ZG_I¢Illl • V ;
a S J: I:

11 f_ZT SKI"Ill; /e Tllv tqll,I 11 */
I¢ !_0;
H l_ lH',ll ;
PI ll:ll I

PI CLOSE lXM'IPLI ¢l;

6.3.1 Arrays of BOOLEANt

BOOLEAN arrays are not substantially different from arrays of other data typcs.] he

only attribute of BOOLEAN arrays that dogs not directly follow from the previous di_:us-
Mon Is' Whe_lerer a BOO_E,_ V .rray 1_ _l_b_('rlp_ed. [he _t_b_c'rtl,t ,lu_t e_td _ith a (v)hnl.
The veasofl for this gestriction is that BOOLEAN is actually s Special case of niT stnnls.**
Like VECTORs and MATRIXes, bit strinlP may possessco_nponent subscripts. Thus. even
thoulh a BOOLEAN has only one componer,t la sinllle bit), th¢ colon must be supplied
to indicate that the subscript is an a_roy subscript rather than a component subsclipt.

Aside from this restrietzon, BOOLEAN arrays age used in the same way as arrays of

other types; deJaration and initiaJi_ation t_k¢ the same forms..

,e

, # DECLARE AKRAY(I2) BOOLEAN.

A.
B INITIAUOFF),

C INITIAUOFF.ON.91ON.OFF):

and m_yed auJlnments and compliment also function as before:

I;415(I TO6:) - IBI$(I TO6:) & 0_$(1:) OR li)S(t TO= I:)):

IFI_] o TRUE THEN ...

One typigal use of BOOLEAN imys i_ for matntminll status tables, For i.ilance, if
we hlKI I lilt of geduMInl iltimelllrs pmducJnl iii lilly of Iitjtud_ vllugs:

_lrir' **lil Iltlnllll _l fully cllglibed m L'hipltl I 3. The wold IOOLIE.4_ is ell_lly eqawallnl to "lllTt I jl".

ir

1980004512-109

6.20 Arr*_rt

DECLARE ALT ARRAY(4) SCALAR. '_

and a '"parallel" anay containing the time at which each valor was rc_'
d

: DECLARE TIMETAG ARRAYI4I SCALAR.

then it mi_t b¢ useful to define a boolean array of the same size:

DECLARE DA'IA_VALID ARRAY(4) BOOLEAN; r_

each element of which indicates the validity of the con'es_ondin| altitude value. One pro.
t;ble form of this reasonableness check is shown below:

r_ l_{lffll;L,{ a;
| M ;t;lC._=s.;

M OilCi.AJI AIIJAtt A!i.
M AI.*" S¢ALIlI,

? :M8"*'_5SC'LJm.
M OATJ VALIO |_L|AN *-
I'! O{¢LAII| SC**LAJ Zhz'rtALI 0 I,
H TOTAL. f;._:_ t ID |000 ;
M OI[CLLI! A_.'I[IAS| ${4Lgl;
I'1 O0 I_Lqll t|_lr_Af¥ 3 • I TO 4;
I'I IIW |b'?*;T|_| * 'Y*_.TJ$ • , 1 MALT •u 8 ON JiLT • |O00i TH|H
90 J J J

n OATaoVAt, IO _ FAi.Sf[|
S J:

n | LSI[

| .
n O&Ta.VAL|O e lq;_;
11 J;

n N_IIEIP it¢_ , le_lllll.ll_O , |;
M TOTal, • TOTAL * < |
$ J

• in 11401

Jl N lVlIIAll 8 Irolr&L / 14_11 II(lOOi
• • II IO Ir_,l lrll'llclljl,llY I • I TO II

I
M IF IliA .Villi _N
II I:

M 1t Ji8111&Ll - AV_I_I • ,I IVII&I_ Tl_N
$ I **a*

d
8

._ oA,,'v**:o,, ,.mi
n INO;

. ¢ I UI i_lVll IICIIINll _ liJll IINllll II J4_liATIVf I IIIO,C al vii I.lllll em till _ 081leo tit tiler lJ*i JVllt_lll
Iq Iit.011 |_JIF_I,I._I,!

i

' i
X _

] 9800045] 2-]] 0

Arr_m'_.1 _)therD_ztaTr;,_ _.21 'i

Exerci_s

b.3A Write out graphiL'ally the results of the following initializations:

i) I)ECLARI: X ARRAY(3) MATRIX(3.3) INITIAL(9#.I,*)

ti_ DECLARE Y ARRAY(3J) VECTOR(3) INITIAIAg#.I,*)

iii) I)E('[,ARI-," Z ARRAY(9) Vi:CTOR(3) INITIAL(9#.I,*)

iv) DECLARt: A ARRAY(27) SCALAR INITIALIg#.I,*)

6Jll In the previous problem, the initializations lists were transformed into their graphi-
cal interpretations. Usintz this data, assign the twenty-first element of the lineariza-
lion of X, Y, Z. and A to :lscalar variaNe. S.

6,3t' ('iven a variable M. declared MATRIX(3,9):

Assign the 16th through 22nd elements of the hnearization of X, Y. Z. and A to
a the 2nd through 8th elements in the linearization of M,

f

6.3.1A The Sieve of t'_ratosthenes is an ancient Greek method for computin 8 prime num-
ber_. but it still works today and is quite suitable for a _ompnter. The algoritllm
works as follows:

Start with a list of inferrers from 2 to the I_,_es¢ number of interest. ('ross out all
multiples of 2, then all i,_uitiples of 3, and st) on.]'lie remainin8 numbers are then
all prime.

Wnte a HAL/S pmtzram to print out all primes less ti,an It)O, usintz the Sieve of
I-;ratosthtnes. (Hint: Use an ARRAY r_f BOOLEAN type to indicate if a number
is prime or not.)

,. J

?

L

It

0

1980004512-111

6.4 FUNCTIONS OF ARRAYS

In S_'ctltln (_.._ wt, saw that tilt, statenlt`ll|;

"'IAI = IBI l/2,,,

whcrt` A and B art"tdetltically dhnensioned arrays, results in each element of A being set to
tilt, .,_.lttareroot of tilt' corrcsl_rding element of 11. As the reader might expect, tht, _nlt,
rLsult may be obtained by the statem:nt:

"'IAI = SQR'F(IBI L".

Whent,vcr any of tht"built-in functions introduced so tar is applied to an array, the result
t._an idt`ntically dimensioned :arraywhere each element is the rt,sult of applying the function
to tile corrt`spt)nding elt,ment of tile .irrayed operand. Stm_'.,rly, the rules for |'unctions of

two argmllent,t, such as MOt) or DIV, are the same us for infix operators (t,,g. +, , **, ere.l.
a both argumt,nts may bt, unarrayetl, or one nlay be arrayed and the other unarrayed, or both

may Ix. arrayt,d land of identical dimensions). This usage, the arrayed mvot.atl_m of a fllnc-
tion, has I_,..en:amply illustrated in tile pl_,ViCq.lss,.'ctton_ IIAI/S also provides a _t of flmc-
ttons that will ._lh' accept arrayed arguments,

Ont, of tile exarnplt,s in Scctiott 6.1 gathered some statistics on tile exect|tion time of

tilt, matrix inverse operation. A SCALAR ARRAY(IO0), TIMF, was filled with IO0 ._tmples
of *.he execution time of an assignment statement. Then the variables T MIN, 1" MAX,
and , MI'_AN weft" set to the minimum, maxunum and mean values from the array by

me.'ms of a I_p. More compact code fi)r the same function is shown below.

"r MIN = MIN(IFIMFII:

T MAX = MAXIITIMI')I;

'i' MI:AN = SIJM([I'lMFl'l/lOO'

IIt`rt,, tile built-in fimctions, MIN, MAX, and SUM, rc_fi_ce an array to a single unarrayed
vahw. l:ach of these fimctions [and a fourth, PROD) rtqu:rt's an arrayed operand. The

array nlay be t,ithcr IN IT ;I".R or SL'ALAP (of t,tther precision_, and the result is an t|nar-
rayt`d value of the .valnt,data type and precision.

• _r I'he SUM (unction simply adds all of the array dements togt,ther'

"SUMllAI £'

f is equivalent to:

'1_ "AS1 + A$2 + .., +ASn" .

The PROD function multiplies 'all of :he elements together in a similar manner: (A$II
{AS...) (A$3] , , . (ASn), MIN and MAX both search throuith the array, and return the

:. r_dm' of the array element which is algebraically mlallest (MINI or largest tMAX). All
' of these functions will accept a multi-dimensional 'u, _, but the result returned is always

_¢- . unarrayed. Thus, given:

_''

r_ "/;. ?

, ._'_

1980004512-112

i

Functlons of Arra.vs 0.23 i

[A] = (5,17,-3,21),

MIN([AI) = -3,

MAX([AI) = 21,

SUM([A]) :- 40, and

PROD(JAIl =-5355.

The results _!1 be exactly the stone whether A is declared as:

DECLARE A ARRAY(2,2) INITIAL(5,17,-3,21);

or as a linear ARRAY(4).

6.4.1 Shapinll Functions

Throughout this chapter we have stressed the fact that a linear array is not the same
type as a VECTOR, and that a two dimensional a,ray is not the same type as a MATRIX.

a Sometimes, however, it is useful to be able to convert one type to the other. For instance,
we might want to use arrayed statemcnts to compute the x. y, and z components of a
vehicle's position from some complex sensor, and then to treat the results as a 3-VECTOR
for further computations. We already know from Chapter 2 that siren:

"DECLARE A ARRAY(3) S(ALAR,
V VECTOR;"

the conversion can be made by:

"V = VECTOR(A$1,A$2,A$3);"

in fact, the form, "V ,, VECTOR(JAIl." is completely equivalent. Both the VECTOR
and MATRIX conversion functions will accept any mixture of arrays and simple variables
as operands, provided the total number of elements is correct. When an array is specified
as an operand to one of these functioas, it is "unraveled", i.e. it is effectively replaced with
a list of its element_ in the same way, an array of vectors can be unraveled for assignment
to a larger vector:

j" _ DECLARE AV ARRAY(2) VECTOR(3):
DECLARE VECO VECTOR(O);

VEC6 = VECTOR 6 ([AVII;

The statement above is functionally equivalent to:

_'3ATI = AWl:'

_'3AT4 = _i[V2: :

1 *- 6

. J
.m_mm_mmm.mvr J ..L_ _ : _ ':

1980004512-113

6.24 Arrays

The MATRIX function works m much the same way, a 3 by 3 MATRIX. M, can be assigned
as:

]_ = MATRIX([A"'VI ,[A I);

yielding:

AV$(I'I). AV$(I'2), AV$(I:3)
M = AV$(2:I), A_$(2:2), AV$(2:3)

A$1, A$2 , A$3

To perform the reverse conversion, the INTEGER and SCALAR functions are used.
These functions have already been intro(h*ced as explicit type conversions; when they are
used with multiple simple arguments or any type of data aggregate (arrays, VECTORs,
etc.) they return an arrayed result. Thus. using the previous declaration, we can set an array
to a VECTOR as-

[AI = SCALAR(V);

The SCALAR (or INTEGER) function will accept any number of arguments of any arith-
metic type so long as the total number of SCALAR or INTEGER values agrees with the
subscript of the function.

These functions have a number of uses. They may be used to convert the type of data as
shown above, to initialize an array, as in:

[SMALL PRIMESI = INTEGER(I.2,3,5.7);

or, to re-arrange the elements of an array (hence the term "shaping functions"):

DECLARE AI 2 ARRAY(I 2) INTEGER;
DECLARE A4X3 ARRAY(4,3) INTEGER;
DECLARE A3X4 ARRAY(3.4) INTEGER;

[AI2] = INTEGERi2([A4X3]);

0 [A4X3] = INTEGER4,3([AI2]);
.I

,4 [A3X4I = INTEGER3,4([A4X31);

When, as in the last two statements •bore, the INTEGER or SCALAR functions possess
multiple subscripts, the result is a multi-dimensional array; each subscript denotes the size

_: of one dimension of the array.
.!

Each subscript of the INTEGER or SCALAR function must be computable at compile-
, time (i.e. each must be an arithmetic expression involving only literals and CONSTANTs).

In addition to the subscript, the precision specifiers, @SINGLE and @DOUBLE may be used
to change the precision of the operand. Just as in the VECTOR and MATRIX functions,

the precision specifier is used as a subscript and must precede ,t,e array dimensions. Thus, an
ARRAY(i 2) SCALAR, S, can be converted to a 2x6 INTEGER DOUBLE array, I by:

_.¢o [11 = INTEGER_DOUBLE,2,6([S]);

1980004512-114

Functionsof Arrays 6-2_ _ _

J
Exercises

6.4.1A Use vector shaping functions to provide a clearer solution to exercise 0.3C. _ _

(Note: This problem requires that the reader see Section 6.5.1 of the Language ?
Specification.) _'

6.4.1B Given the followins declarations:
._'

DECLARE X ARRAY(2,3) SCALAR INITIAL(2#(I.1,2.2,3.3)); ._ ::
DECLARE V VECTOR INITIAL(.I):

State the types and depict graphically the values of the following expressions: _"

a) INTEGER(X) "

b) INTEGER(X,X) s :_
c) SCALAR(V)

d) INTEGERS(2,6) (2#X)

e) MATRIX(3#V)

f) VECTOR$6(X)

i_2 ,

1980004512-115

6.20 .4rravs

; End of Chapter Problems
L

¢_A I'he median value of tile ele,nents or an array of odd dimension Ina_, be computed

b_, ,,ortlng tile elements in ulcreasmg order, lhc middle elenlent of a sorted array is,

m fact. tile nlethan value Write a program to find the median value of an array of

25 untegers. A simple, though not ver_ efficient, sort algorithm may be described
as tbllows'

Find tile smallest ¢lelnent of tile array, If itis not the frst element, exchange tt with

the first. Then find the smallest of the remaining elements. If it is not the second

element, exchange it with tile second. Continue until the entire array is sorted.

An advantage of this algorithm fi_r the medJan-vahle problem is that it i'; not neces-

sary to sort the entire array, finding the 13th smallest element is sufficient

hB We have n[ade many tmllng,_ of 3 proces,_s A. B, and C. rhe results of our fillings
art" m 'm array TIM _ VALLII.:S declared.

tl
l'lM VALUES ARRAY(3,25) IN IT(;FR

We nov, wish to process this information, finding the sun, for all 25 timings of each

process A, B. and (', and the sums of the tunes for each set of tHnings for A, B, and

C (i.e, row and column totals). Tins ulfornlatlon is to be put Ill all array together

with the raw data, and this array is to be called I'IMIN(; DATA.

Write a segment of code that will create this new array and do the necessary infor-

mation processing.

Include any assumptions made and any new vanables declared,

• it

r #,"

1980004512-116

II

UacrDcflnedFunctions7-!

7.0 PROCEDURES AND FUNCTIONS

:_ In HAL/S, the concept of a subroutine is realized in two forms: PROCEDURES and
? FUNCTIONS. Each is a block of code delimited by a block header and a CLOSE statement.

These code blocks may be nested within PROGRAMS or within each other to any degree,
scoping rules restrict the variables each block may reference, thus avoiding a large class of
potential programming errors. HAL/S PROCEDUREs and FUNCTIONs have two basic
uses: to share a sequence of statements among different paths through an algorithm, and to
segment a programming problem into manageable parts.

7.1 USER DEFINED FUNCTIONS

HAL/S includes a large assortment of built-in functions. These include trigonometnc
routines (SIN, ARCTAN), algebraic routines (SQRT, EXP). conversion fundions (INTE-

GER. VECTOR) and many others. These functions may be used in expressicns along with
a variables, constants and operators; they add to the power of the language by eliminating

much low level coding and allowing sophisticated operations to be expressed very com-
pactly. The set of built in functions is a part of the language, but HALLS also allows the user
to define new functions which may then be used in exactly the same way as the built-ins.

One type of operation which occurs frequently in flight software is the limiting of a vari-
able to a given range. A FUNCTION to perform this operation is shown below:

14 LZ_|T: |
fl FUNCTI_I(VALUEs BOUle) SCALAIt|[
n DEer.ARESCALAm, |
I1 VALUE,BOUHO; [
rl IF VALUE> BO_40THEN I
I_ ltET_. BoUtrJ; I
li IF VALUE< -B_.JHOTHEN I
n IIETUIIH -BOUt40; I
11 Itf'rul_H VALU[; I
ft CLOSE LZHITi I

The function block is delimited by FUNCTION and CLOSE statements. The CLOSE state-
ment is the same as in PROGRAMs; it consists of the word CLOSE and an optional block

_" _ name. The FUNCTION statement contains three pieces of information: the label on the

, ,, , statement, which defines the name of the function, the names of the formal parameters
(sometimes called dummy arguments), and the return-type of the function.

LIMIT is a scalar valued function of scalars. This fact is denoted by the word SCALAR
on the FUNCTION statement and the declaration of the formal parameters. In general, a

function's parameten and return value may be of any data type; hence the return type must
always be specified on the FUNCTION statement and the formal parameters must always be
declared. Declaring the formal parameters prior to any local data is good prolp'amming prac-
tice and should be treated as a requirement.

.... The operation of the LIMIT function may be seen from the following illustration, which
is a graph of YmLIMIT(SIN(X),I/2); for 0 • x _ $ pi/2:

J
. . -- : JlLJI2 J__._

1

] 9800045] 2-]] 7

7-2 Pro,_edures and Functtons

\ /--
.c. ,/2 _ 3-1"i'

_ x

. 1,0"

Limit Function

Functioas must always end by executing a RETURN statement. The RETURN state-
ment always has one operand which represents the value of the function. The value returned
may be a variable, as in LIMIT, or any expression of the appropriate data type. Sometimes

A the executable cotle of a function consists of only the RETURN statement, for instance'

tt t_ASS:

fl FUt_CTIOH(REST NASS, Sr[EDI SCALAR;
n DECLARE SCALAR,

H PESTMASS, SPEED;
It TAU:
I1 FUnCTIOn41V ! SCA£AII ;
H DECLARE V SC_LAW;
I_ OECLAI;E C CO_4STAItT! zqBo000) ;
E Z Z
n aETL_H S_TII - V / C I;
M CLOSE TAUt

M gETU_?l REST HASS / TAUISPEED);
N CLOSE _SS;

Using these functions, the apparent mass of a IO0-ton vehicle moving at 20 k,lomelers

1 per second can be computed by:
j"

d ¢ APPARENT_MASS = MASS(100,20);

1980004512-118

i

USer De[Ined Function1 7.3 ',_

As it turns out. the MASS function is not going to be very useful: Twenty kilometers |

per second is so slow (compared with the speed of light) that the relativistic mass increase

will be lost in tile round-off errors inherent in the computation• To find the range over i
v'hich this effect can safely be ignored, we could execute the following code: _

t

DECLARE V SCALAR: I _
DO FOR V = 250000 TO 0 BY -I00 UNTIL

ALMOST_ EQUAL(I .MASS(I.V_k _.

END: i
WRITE(6) 'THE ANSWER IS ' V; _ "_

This code references an additional user function. AL._tOST_EQUAL which could be ,I _"
written asshown below: i

4

II ALHOST.EINAL:
H FLINCT[ONIA, 6) BOOLEAN;

n OECL*'tE SCALalt. ' ,_"
M A. 8;
H DECLARE TOLEaMR| SCALAa; _ r

a fl IF 8 -= 0 THEN

H TOLEIIMIC[• .000001 A85181| i
M ELSE
I1 IOLIIIMRE • .OOO001; _ _'_
M][F ASSI& * |) • TOLERANCE THEN *"
H RETUPN FALSE;
M l LSI
H IIETUIN TwOI;

H cLOSE AUI'JST_I_UAL; j &

ALMOST EQUAL is a BOOLFAN-valued function of scalars, as denoted by the word BOO-

LEAN on the function header and the declaration of Ute formal parameters. Hence the RE-
TURN statements have BOOLEAN operands: TRUE and FALSE.

Since no other data type is automatically converted to BOOLEAN, a BOOLEAN expres- i

sion is the only permissible operand to the RETURN statement of a BOOLEAN function.
Likewise. the RETURN statement of a VECTOR or MATRIX function must be supplied
with a VECTOR or MATRIX expression, respectively. Exact matching of data type is not
always required, however; the same implicit conversions that can be performed in an assign-
ment statement can also result from a RETURN StAtement. These conversions are:

0

• • I. Single to double precision

2. Double to single precision

3. Integer to scalar

4. Scalar to inteler

5. Integer or scalar to character

:i

¢

)

1980004512-119

7-4 l_ocedures and FUnctions

Asidefrom theseexceptions,thevaluereturnedby a functionmust be ofexactlythesame
type as that specified on the function header.

The function header serves as a declaration of the function. Variables must always be _"

declared before they are used in expressions; the same rule applies to functions as well. _
Therefore. function bodies are usually placed before their first avocation in a program.

However, in the previous example, ALMOST EQUAL was defined after it had been

used in an UNTIL phrase. In this case it is possible to make a valid HAL/S program without
moving the function body, by DECLARING the fun:tion before it is used, as shown in the

examplebelow: _,

i

ll [X/.HPL| N:

M C[CLARE V SCALAR; .:.
It CECL,_RE ALHOST EQUAL FUI_TION BOOLEAN; /e<---e/

H FU_ICTIC_{IO[ST M_S$, SPEED; SCALAR;
M DECLARE SC&LAR,
M aEsr .M;SS, SP[_D;
M TAU:

M r_tTzt_(w SCALAR;
a M 0ECLAt[V SCALAR;

C
C .;

n CLOSI[TAU;

C
C
C

M CLOSE ItA$S;
IS . *
M DO FOil/ V • R$O000 TO 0 BY -loa UNT'/L ALtIOST I[CIUAL[I, 14ASSII, V));

n klR][T[(6} 'THE ANSk*I[R IS*, V;

H AUIOST.EGUAL /
n FUt;CT:CNfA, |) G*.'_l..L|AH;
H OECLAN[SCALAR,
M A, B;

C
C
¢

n CLOS[ALMOST.E_M L ;
• IJ

• H CLOSE |XM_LE.N ! -
,;4 J

The FUNCTION DECLARE statement hat the same _nend form at a variable declaration :.
except that the word FUNCTION (with no argument list) precedes the type specification.
O! course it is always possible to place a function body before its first invocation as was
done with MASS and TAU above, in which case the DECLARE statement is unnecessary. ,

. • g

¢

(ig;_ .

1980004512-120

User Dcflned Functlo_s 7.5

Exercises

7.1A What valueswillbe writtenby thefollowingHAL/S program?

PROBLEM: PROGRAM:

DECLARE I INTEGER INITIAL(1): .

P!<OCI: FUNCTION INTEGER:

DECLARE I INTEGER INITIAL(1):

I=I+!;

RETURN I.

CLOSE,

PRCC2: FUNCTION INTEGER:

• i=I+i;

RETURN I:

CI.OSE;

I = PROCI :

WRITE(6) !:

I = PROC2:

I=l ¼�WRITE(6) !;

CLOSE PROBLEM;

• j

jdr

r

1980004512-121

,".4ProceduresandFunctions

7.1B Whatarethes)ntaxerrorsinthefollowingHAL/S protzram*(Linenumbersarcfor
referenceonly.)

I) PROB2:PROGI_S,M:

2) DECLARE X INTEGER:

3) Y - Y +I:

4) PROCI: FUNCT_*ONINTEGER:

5) DECLARE Y INTEGER'.

6) X"FRUCl.

"_) XsPROC2:

g) X=X H�:

9_ PROC2. FUNCTION:

10) X=X+I:

I I) Y=Y L�:
I

12)CLOSE:

13) CLOSE.

14)CLOSE PROB-_:

,t

_4

J

.i

1980004512-122

w

•Irl_,_' ' sl _n.Ji'aram¢t¢_I 7 ?

._ 7,2 ARGUMENTS AND PARAMETERS

The types of the arFuments 7";--:'edto a function must ajtee with th_ d_ _J_t_tlr n of the
formal p'-,r-,mele_ The [rJrmal pera,'netrrs (which ,..omc lanllualccs term "'J,_mmy _rlzu-
ments") arc declared in the funchon imply, the function argumenls are th_ c'_pr¢_s_,ms
specified in lh¢ function invocation. For example in the in_,'ocalion:

... UNTIL ALM()$1" FQUALI_,MAS_t.V)).

The two ar_ument%are scalarexplre_ions. 'The formal parameters are declareJ in the func-
tion body:

ALMOST EQUAL: FUNCTION(A_I_BOOLEAN;
DECLARE SCALAR.A,B;_

a DECLARE TOLERANCE S(.'ALAR;'_._\

('LOSE,

(%Formal parame,j_

l"ormalparametersin thefunctionsdiscussedso farhaveallbeenscalars,but itispoui-
hleG,_'them to be of _t_ybasicdatatype:Intel_r,Scalar,Vector.Matrix.Bookan.('harac-
tcr,SmJctureor Bit.I he typeof a formalparameterisdetermined_olelyby itsdeclaration.

The actualarltumcnts_upphedwhen a functionisinvokedmustbe of the_me datatypesas
the formal parameter1. The excep.on to this ru4¢ is that under some circumstances the
actual arlur'_ntwill be auton_tically limpJicitly) con:erted to the type :equired by the
function. The conversionsthai are permitted are the _lme set _hat are allowed in an
mcnt statement - those that were listed earlier as allowabletype conversions in the
RETURN statement,

• I The declaration of a formal parameter takes exactly the same form as any other
• • DECLARE statement. The INITIAL and CONSTANT ' ,tributet may not be used. but

otherwise, any attribute _l w,:ceptabl¢. A functk'm may have any number of formal param-
eters, tncludm| _ro. "t'he f_8 Is an example of • .m,_;tio_ in which no atsuments

. appear:

i

t* •

I"#" ".'"_

1980004512-123

4

?.S _,._rdltr¢# Ind Func#wnJ

n leOnE:
M pt.e,l_.1'I0H |Prr|i|I;

: H I_'TUeM | mk_,'2gl5 * 1;
n CLOSEIIOLL;

i

The ROLL lun¢lionrelearnsani1icier inthe ranle I to 6*. II maybeinvokedas

IX) UNTIL ROLL + A:)LL - 7:

Functions without plran_lell usually either accesdl IJohil data or perform some sort of in-

pul. ROLL IWts its "ini_ul" from the RANDOM function, Ihoulb'l readinl cards or _nsor5 is

actually mote lyphzjiL

A [unction has olily a dali lyplr, bill formal parameters my have other illl'Jl_ll._t. IrE

parth:ular, a formal paramel_ rna_ be array_,d. The foilowin| example b a matrix-valued

Junction of amys of vectors. The re_l/inl matrix conies of the doe productsof' each ?air

d 'P of veCtols.

M " I_II
II Pt,fflCtlL'tllils Jill t_kTIPIXI|I* lit;
n OICLlll llliilll! vlCtOlll),
II lit Jig;
N OleLjiel IIII_LT I'l,irl|Xlll, |1);
FI O0 F_.'I*TIl'tlrl.'tJIlf I • I ?0 11;
n O0 r0m 11el_wuv j • | TO 10;

.,,_. ;, ;.,
I l,J Is J:

INOI
H lk_|
I /
n ' ll1_m NWI.Y!
It CLOIII I)01'$;

i

Whenevera uorr.deflned run,lion is jpplted to ms trray, the rettd_ is ,n Jdentlco_
dinmssiorued_rrty wbemeeods e_t _ lhe result of Jpplyt, l the f_ke to the ¢oneL-

. a" t pondinleJnwnt of the amlyed Ol_nmd.
a4

Before letvbs8 the mt_ect o4 functiom,onemen veryimpostor pointmint be made:
No _t_ _y sm_ _y ol #s_ p_mer_ Thalis,panu_te,areviewedas
coeslJnls witllltl tile function body. As • consequence, for eumple a formalparameter can-
nOl be usedasn loop _,oulroivasrtablesi_¢ I loopcontrolvariableis modit'k'doneachitcra-
lion.

p

t
,._ I IJ_IL i Q)

1980004512-124

I'h_" prml.lrv il|l¢lll of Ihl_ rule is Io make ilAL/S ¢odl' L,asiL.rt_) k.ad _ml Inah|laln. III
l,mgua._,."_which do 11oihJvL"lhis rt,,_lrictiol|, it is ilof l)O,_sil)l¢to dl.'t_'rlllilIl.,w|ii,.'h variant'.,,
arc bell g modilicd by il)sf)t,vtion of a st.:dClIlenl likt. "'A = U._FRI:L)NCIILI',I)),". In :lily
f'mlm'il_', it is n..;i_,oI1ubleto _._'._',m,'that A ts the orIl._ vanabk" modif'i_.'d. In IIAL/S. lids
assumptiol_ will _llwa_s b_,¢orr_,¢t.

l':xer¢'i.,_

7._ _. hI Cxampfc t,. AI MO,'; I FOLIAL I,_d_'clar_'da flin4.'lloll in tit(' (l('¢lar_'I_rouPof the,
I11:1111-f'_rojzr:llllblock,

Wl|h a tlllllor lllodll'l_.'atlt'Ht Io Ihc f_,o_r;llll, |his dCqlaratiolI is llllilL'_.'¢n,,,:lr} Who.It in

Ihe ¢lt,ml,'e'_

7."B hz CX'llnl)]¢ "7, I_ Is stak'd th:lt whik, KOl.i, rl'ltlrIls all i_ltvlzL'rIll Ihe r'lnlzv I-o, ils
ft.'MIll _s IIol tlIllfornz)y distributL'_t.

.O Why"

b) Modify lh¢ lultdiol) R()I I. so IILI11it i,;01tifortltIy distributed _lllll ht¢orPoral_"It
inlo _1ftro_r:lm |fl:ll v..ll ¢ouilt how I'll:lll_ liltll'._ a pair of"dl¢_," Intl,_l b¢' r_,llcd
to hay(, 7 come up ,<;lime,_.

"_.2(" Write :l |IAI._,_ f'_fo_ralil lit;It will r_'ad I'rt.,_ltlChaim_'l ._ two arr,ly,_ of ,_ mt_'lzer_
:lPit'¢¢, lhl'_l Check if"¢or/x',,.l,olldml[¢']¢lnl,'nlsof' the two alT_lysare r¢lalivrI.V pflllll"
(i.e., ,elf Izreat_.',.l_'onlnloll divisor, or (;('1), iN I) It' Ih_'y ,Ir_,"not relatlv_,ly f_rim_',
print o,t Ihe P:llr and Ifl_,'ir(;('1),

A stand:lrLI ;lll_'orlthlll for c,onlfllltinll fhr (;('I) of two IllilllhCr_ is CalleJ the
t"u_.-lid_,al)allzortthn). _md ma_.'bc d_'_'rib¢'d as I'ollews'

,_larl wilh tttt_,'lzrr_m and n. who,,_'G('I) isdesit_,'d.If n " O. Ih¢'n (;('l)|m,lt) : .Ibso-
hire value of m. Olherwis¢'. ft'l r bt, the"r_,maimlerrcsullin_, from divi_ling m by it, _l
r -_ (], thL'n (;('It(hI,n) = absohlt_,,vafll_.,elf"n. ()lltrrwis_.,. if Is |hI" Ca_"Ihaf (;('l)(In,n)
---(;('lXn,r) _inc¢,, by Ih¢ Jef'hlilion o|" Ihe lx,m:lhldrr, r will J_,¢r_,:i,_,,ill ;Ih'_olut¢
v_ihlt' oil each ilera_ioll, it w,ll ¢'v¢lllll:illy b¢¢olllc II.'ro. l'he :llBorllhnl is 'fIlls BIlar.lll-
tc_'d Io lerlnm:llt',

Nolo" I'h_, algorilhm will work for any Pair of il_lelz_'r'_,f'_)sillv_,',nl.'lzall¥¢, or It, to.
l'h_" DIAl/S buIlt-tIt function RI:MMNI)I.R |M,N'_ rlw's the, rCnlaind_,r w11_'11M i,_

p divided hy N, asr_,qullx,d by tile,alltorlllml

7,.t PR('K'I"I)UR E5

I_ro_.'_,durei,_:i ¢od¢ block similar to a f'1111¢11o11."1"h¢,Prinlary disllt|¢tion is |hal Proce-
I.jtlrt'_ ¢i0 11¢)I rl,|llrl| v;Ihl¢,_,, 'l'h_,' RI:TLtRN _|;I|L'IIICII| t'alt I'll., II._.C_.| II1 _1 I_roc¢'d|lrz ', hilt 11o

o|_l'land In:IF hI' provid_'d.Whz,lz Ihl, RI"]'[;RN sl',llt,lt|l,'ltl .s¢'xl'¢Ul_'dilt d f'_r';_.'rd|ll_.',_.'of|lrol
is K,lurned lo Ih_.'¢:llh.,r.'l'hz" RI' I'LIRN ,_talCnlrnl i_ not _,quilx,d in a ProCedllrt',as pro¢_,,.
durz,.,,(m)likr I'mt¢lions) Will rt,turl_ If Ihe I]ow of _'onlrol rt,a_.'h_,,_lh_,'('l (),_1" sfalrnlrltl,

1980004512-125

7.10 Proct_ee# .rid i_ncrtoa_

•rlte only way to invoke a pt_:edure is vm the call statement. Procedure invocations are
not used in ¢xprelions.

The CALL statement consists of the keyword CALL followed by a procedure name and
4 alistof a_uments Of thepr_-edurehasdefinedany parameter_)_e.g,:

t

" CA,.L PRfX'I (X.Y.Z);

X. Y. and Z ar_ the arguments, the pn_cedure defines its fornml parameters }ust as in func-
lions:

PR(X_I: PROCEDURE (A.B,C_
DECLARF. SCAI AR.A.B,C;_--_',,_,_
DECLARE Q VE(q'OR; "_

4 RETURN:
CLOSE PROCI;

Formal l_,mmeters to procedures are like function pKanrete_ in all re_rds, and may
not be modified within the procedure. Procedures also have AS _" 'q _rameters. described
below.

SupPose thal the DOTS function of section 7.2 where I.OC..L VAR is declared a
I0 x I0 matrix wastypically used in statements like:

LOCAt. VAR=IX)T_[VI I,IV21k

In this statement, the IX)TS I_unctionis not used in an expre._sion,but is directly a_,_igncd
into LOCAL VAR. In such a case, _)me inefficiency results from codinlt t_)TS as a func-

lion,Thisisbecausbewhen theRETURN statementisexecuted,the tO0 scalarcomponents
of RESULT arec_V_iedintoL()CAL VAR. A betteranmnttementwould he tocodeIX)TS
aSa price.lure and invoke it by:

('ALL DOTS(IVII,IV-_I) ASSI(;NIL(X'AL VAR)_

• IP
The IX)T$ procedure couldbe codedasshown below:

0¢'

n IOT$_
n plmclo4.Wlll|, All AIIIINIIIIIULIII
n IICLkal MIIt&_IIIalVl_'llltlll,
n al_ &.t
n OllgAal IIISUL¥lqA'llllXIll, loll
fl OOlOq*TII'IPaI*Aa¥I ** I TO101
n O0_ TlnP_ItAaYJ _ 1 1111111
II °
II ItnoL? • _ll . _llt t
I l*J II J!

I¢ Dill
• _ n IHOl

' n {:LOll IITII I

!

1 "

1980004512-126

Procedures 7.11

||ere we see an example of an a._siRr! parameter• RESULT. The statement. "I)FCLAR_ RE-

SULT MATRIX(IO.IO).'" dtws not create a variable as it did in the function DOTS, but

_ merely defines tile data type of the assign parameter. Each assignnlent into RESULT

directly modifies LOCAL VAR. Thus. no copying of data is needed.

Since va.-iables used as assign arguments to procedures can be directly modified from

tile procedure body• no conversions whatsoever are pemlitted The type .f the variable

passed at an assig, argument must agree e¢acth" u'ilh the declaral#m of" the a_ign param-

eter In tile program segment below. A is the only variable which may be passed to P.

DI-('LARE A INI"EGER•

B INTE(;ER I)OUBLE,

C S('ALAR.

D ARRAY(2) INTEGER.

P. PR(X'FI)URE ASSIGN(X);

DFCLARF X INTEGI_;R;

X=O;

a CLOSE P:

A procedure may have any number of fonzlal and assign parameters in any combination.

Thus• several values can be computed in a single procedure, as shown below:

H STATISTICS:
M rROC[DL_EIOATA) ASSIGNILO_VAL, HI VAL_ flEAUl;
fl DECLAREOATAARRA¥||O01SCALAa;
M OiCLaq[SCALAR.
H LOVAL, HE_VAL, ME_I;
H LO.VAL • MINIIOATAII;
H HI_VAL : H&XIIOATA|I;
H HEAN : $UH([OATAI) / 100;
H CLOSESTATISTICS;

This procedure couhl then be ug'd as in:

DECLARE SAMPLES ARRAY(IO0)SCALAR;

DI_CLARE SUMMARY ARRAY(3) SCALAR;

('ALL STATISTICS(SAMPLES)

a • _ ASSI(;N(SUMMA RY$ I .SUMMARY$2,SUMMARY$3);

• i WRITE(6) 'MEn, max anti mean are:'.SUMMARY;

Unlike fomlal parameters, assign parameters may also be modified, as in the following
procedure which sets "AUG LAST4" to the average of the four most recent values of
INPUT:

!

r

• ib

f

1980004512-127

__., 3-, ,
. - _j

7-12 Procedures and Funct#on;

I1 FZLT[R: _;-

fl PRCCEDL_F(INPUT) ASSIGN(AU6 LAST4 J BUFF) ;
n DECLARE SCALAR,

_ ti DIPUT, IUG LASTS; _;,II DECLARS BUFF ARRATI*'*) SCALAR;
_. n [BU;FI : [euFr | ; ,
t S I TO 3 2 TO 4 ;

It BUFF = INPUT;
4

/t AUG.LAST4 : _([_JFFI) / 4;
1 _ CLOSE F ZLTIrR; _,

in this example, components of BUFF appear on the left and right sides of assignment state-

ments. BUFF is probably not used by the code which invokes FILTER. It is passed as an
assign parameter because a separate vernon must be mmntained for each user of FILTER.

• The rules concerning argumentsand parametersare summarized below:

I. Arguments may be expressions of any complexity, but their types must match those
specified in the formal parameter declarations. The automatic conversions of preci-
sion and between integers and scalars are performed, however•

2. Assign arguments must be variables (possibly subscripted, but notexpressionsin gen- .,
eral). They must match the types of the corresponding assign parameters exactly. ,_

3. Formal parameters may not be modified by the procedure or function which _"
declares them. Assign parameters may be both referenced and modified. ._

4, Copying of aggregate data (such as vectors or arrays) occurs only as a result of func- _
tion returns. If an argument (of any type) will not fit in a machine register or accu-
mulator, its address is passed to the procedure or function. Thus HAL/S uses "call
by name" for aggregate formal parameters as well as for assign parameters, even
though the restriction on modification of formal parameters gives the appearance of
"call by value".

'2

,, 7.3A Rewrite the improved ROLL function of exercise 7.2B as a procedure, and modify
• the surrounding program to invoke it properly. This provides an alternate solution ._

to 7.2B. ,

Which of the two solutions is preferable? What general observations does this suiwest

about the choice between procedure and function forms, whe, both are possible? "i

-,?

4

1980004512-128

Scopmg Rules 7-13

7.4 SCOPING RULES

_: "the HAL/S scoping rules for variables may be summarized as follows:

I A variable may be referenced throughout the block in which it is declared and

throvghout ally blocks nested in that block, provided that the nested blocks do not
declare another variable of the same name.

2. A _ariable declared in a nested block cannot be referenced from an oute: block.

3. If va,'iables of a given name are declared in several blocks, each referen:e selects the

version in the nearest enclosing block.

HAL/S prr'ccJures and functions may be nested within programs, or within their proce-

dures ,rod functions to any degree.

This block structuring capability nn conjunction with the scoping r_des above enables a

measure of functional modularity in the development of software. In other words. HAL/S

allows the collection of related procedures (anc functions) into fun,'tnonal entities (them-

e selves procedures or functions). The local resources within these entities, viz. declared vari-

ables and nested procedures become unavailable, actually unseen, to 'outsiders'. Communi-

cation takes place only on the highest, most visible levels.

Procedure and fun tion haines are also affected by scoping rules in that a procedure or

fimction may be inv.Jked from the immediately enclosing block and from any other blocks

which are nested iv. the immediately enclosing block. An exception is that a procedure or

function may not be referenced from within itself: HAL/S does not allow recursion.

The following diagrams illustrate the moping of block names. In each diagram, the

shaded area indicates the region from which the block marked with an asterisk may be in-
voked:

....
• _ lunnnInn

t

ia, i i i -]ii i] li I lill "

i n n n I iii I in i mu

,r'}
,¢ t

k _

]9800045]2-]29

7-14 _'roctduees and Functlon$

7.S ARRAY(*), AUTOMATIC, AND NONHAL 4

In the previous wctinn, a procedure was written to find the minimum, maximum and

mean of an array of t00 scalars. The STATISTICS procedure would be more general if it
would accept an array of any size. The routine is rewritten as fcllows:

I1 STATISTICS:

I1 P;_OC[0L'REIDATA) A$$1StI(LO_VAL, HI VAL, HEANI; r

n DFCLAR[DATA A_RAYIi*! SCALAR;
H D[CLAR| SCALAR,
n LO VAL, HZ VALp MEAN;
n LO_VAL • HZff(| OA'lA 11 ;
I1 HI VAt. s MAXIIDATAII; _.

I1 ,[AH : SU;IIIDATAII / SXZEllOArAll; _.
PI CLO_E STATISTICS i

Two changeshave been made: First, the formal parameter. DATA. hasbeen declared asan
ARRAY(*). DATA is still a linear array, but its size may now vary from invocation to invo-
cation. Second. the constant I00 in the computation of MEAN has been changed to the ex-
pression SIZE(DATA). SIZE is a built-in function which returns an integer denoting the
number of actual elements in an ARRAY(*).

fhe asterisk may be used as an array dimension only in the deflaration of a formal pa-
rameter. An array of any data type may possess this attribute, but all such arrays must be
linear (single-dimensional).

Even though a procedure or function may be written to accept an array of arbitrary size,
the size of each actual argument must still be known at compile-time. Thus, given the
STATISTICS procedure above and the declarations:

DECLARE A ARRAY(IOOO)SCALAR',
DECLARE SCALAR,X.Y,Z;
DECLARE J INTEGER INITIAL(60);

The statements, ._.I

• • CALL STATISTICS(A$(I TO 60)) ASSIGN(X,Y,Z);

and -.

CALL STATISTICS(AS(61 TO #)) ASSIGN(X.Y,Z),

are both lepl.

" i

.J

,o

..- 7,, ,I

1980004512-130

Arrm'l*l, Autum.,rlr, tad NONIIAL 7-13

atlt;

CALL STAI'ISrI('S(A$(I TO JI) ASSIGN(X,Y.Z):

,,: is not legal becaus_ J is not a constant', i.e. the width ol' the partition (I TO J) is not known
until runtime,

?

7.5.I AutomaticInitialization

The following function will correctly slam the array of vcclors, V, on/y on its first invo-
cation:

H VSUtt:
n Ft.R._T_CN(V) V(CTOg;
H OEC|AW[v &gntyie_ VECT_;
tt O_CL&a[TOTALV[CTOII ZNZT|ALI01;
!.
n OOFO_YTI[HPOi_ARYN :) TO S|Zi[I|VI);

fl tOTAL : 70TAL * V 7,
a S N:

Iq l_);
[
n RETURNTOTAL|
II CL05[VSUIt:

The problem is that TOTAL is initialized to zero only on the first invocation of VSUM. One

way of correcting the problem is to add the statement, "'TOTAL = 0:" before the loop. A

more convement means of attaining the same result is to replace the de_'laration of TOTAL
with:

DECLARE TOTAL VECTOR INITIAL(O) AUTOMATIC;

The AUTOMATI(" attribute controls the manner of initialization of a variable: .an

.4(/TOMA 1"1(" rarklble is set to its I,_'ITI.4L ralue on each entre to the ct)ntcinlrtg c_te

block. In effect, the _'onlpiler generates an a_iitnmenl statement for each amomatically

initialited variable immediately after the declare group of the containing block.

It is important to remember that by default, initialization is STATIC (the opl_)_te of• is
,' AUTOMATIC). If the AUTOMATIC attribute is not specified, initialization occurs only

t dr once. at the time when the program is first loaded.

7,$,2 The NONHAL AttlrJbute

Sometimes it is desirableto prngraman applicationin a mixtureof HALLSandnon-
' HALLS_.(_le.either to capitali_eon existinllsoftwareor to make machine-dependent

operatingsystem interfaceswhichare not availablein HALLS.Whenthe non-HALelate
' consistsol'_ubmutines(proceduresand/orfunctions)there is a convenientway of making
._ themaccr_ble to tIALIS.Thisis the NONiIALattribute,usedin adeclarestatement.An
) exampleis:

DECLARECPUCOSTFUNCTIONSCALARNONHAL(I):

.:_ _._. .

1980004512-131

_-16 I_ocedures and FunctJons

The form of this statement is essentially the same as the declaration of a HAL/S function
that will be referenced before it is defined. The only difference is the NONHAL attribute,
which indicates that the funcUon body is not included in this compilation. Note that the

dala type of a NONHAL function must still be supplied.

A similar form may be used to define a pr_cedure written in some other language, e.g.:

DECLARE PEARSON CORRELATIONS PROCEDURE NONHAL(2);

Since a procedure has no data type. none is supplied m the declaration. NONHAL proce-
dures and functsons may have formal parameters; the number and types of these parameters
is not specified in the declaration, and in fact, may vary from call to call. No type checking
is performed on the arguments to a NONHAL procedure or function, and these blocks may
even modify their input parameters: hence, great care should be takeh when using the
NONHAL attribute.

a The operand Io the NONHAL attribute, which consists of a positive integer, indicates

the particular language nn which the subroutine was written. The association of each number
with a particular language is implementation dependent, and some compilers may not sup-

port NONHAL at all.

These statements may n,t be used to interface separately compiled HAL/'S modules. A
means of sharing HAL/S subroutines between separate HAL/S programs will be presented in

Chapter I I.

End of Chapter Problems

7A

®
®

[®
P

J

_4

- I ®1e4.

i :u
i ,

• ,,ns/der the above ne_tinll dialcam that depncts the scopins of blocks.

For each of the procedure blocks numbered 2-6, write the numbers of the blocks
' "#" from which that pn_cedure may be invoked.

1980004512-132

/

Array('), Automatic. and NONHAI. 7.17 f

7B As in exercise 2B, a ball is thrown from a height of ! I0 feet with a horizontal veloc- i
ity of 4 ft/sec. Suppose that it now rebounds to 75% of its previousheight on each _
of IO bounces, and consider the following skeleton of a program to compute the
time until the tenth bounce:

DO FOR i = I TO NUMBER OF BOUNCES; :_:
DROP_TIME = TtML TO DROP (HEIGHT);
CALL HORIZ MOTION (DROPTIME) ASSIGN (HORIZ DIST);
TIME = TIME + DROPTIME;
WRITE(6) 'BOUNCE'. I. 'TIME'. TIME. 'HORIZONTAL

DISPLACEMENT'. HORIZ DIST;
CALL BOUNCE ASSIGN (HEIGHT, BOUNCE_TIME);
CALL HORIZ MOTION (BOUNCE_TIME) ASSIGN (HORIZ_DIST):
TIME = TIME + BOUNCETIME;

END:
CLOSE DROP;

Complete the program by writing all necessary declarations, initializations, proce-
dures,and functions.

7C In exercbe 5A, a proipramwas written to compute the value of a definite inteipralof ,
the SQRT function u,lng Simpton's rule. Modify that programto compute the value i
of a definite integral of a function of the form fix) = ax_ + bx_ + cx + d. Assume _"

that the quantities a, b, c, d, initial, final, and epsilon areavailablein that orderon
channel 5.

7D The increased modularity and readability brought about by the use of procedures
and functions is net without cmt. Procedure and function calls are typically tome-
what expendve in termsof computer time, and theirover.use can unnecessarilydow
down a program.

For example, in problem 7B, the procedure HORIZ_MOTIONcould easily be elimi-
nated. Furthermore, on the last bounce, the height and time of the next bounce are

_* computed, even though they will neverbe used. Assuming that efficient use of com-
&°

i _r , purer time is here of primary importance, rewrite the solution to as to eliminate
these two sourcesof inefficiency.

1980004512-133

The WRlTt; $tatement 8-/ _.

8.0 I/O AND CHARACTER STRINGS

"_ The HAL/S !/O statements, READ, READALL, WRITE and FILE, are designed to pro-
vide a convenient interface to external devices used for software checkout and non-flight ?
applications. The READ, READAI L, and WRITE statements perform sequential character _

i/O to such devices as card readers and line printers, The file statement transfers binary
(unformatted) data to and from random-accefd devices such as drums and disks. These

statements are all designed to provide the basic capability of getting data in and out of a
HAL/S program with a minimum of programmer effort.

For sophisticated ground applications, the simplicity of these statements can be a dis-
advantage when highly formatted output is required. To Wve the programmer complete
control over input and output formats for tho_ applications that requi_c it, HAL/S provides
a comprehensive set of character manipulation facilities. Any data type may be converted
to a character string; operations on the resulting string can produce any desired representa-
tion of the original data.

a Although mint flight computers do not have interfaces to character devices such as line
printers, it is common practice to use ground based computers for early checkout of HAL/S
code. HAL/S !/O statements can then be used to address the wide r_nge of external devices
(peripherals) found on suchcomputers.

S.I THE WRITE STATEMENT

The WRITE statement has already been used in the examples of the previous chapters,
A typical instance was:

WRITE(0) 'THE ANSWER IS', V:

Although this statement was not fully described at the time, the assumption was made that
the string "the answer is" and the value of V (a scalar) would come out on some sort of
printer. The following paragraphs describe the manner in which the output is sent to a

particular device and the format in which it is printed.

The routing of output to a particular device is controlled from outside of the HAL/S

• t program. Each WRITE statement specifies a channel number (in this case. channel 6). _,
A channel may be thought of as a virtual device or as a port between the HAL/S program and

• / some peripheral. HAL/S defines ten channels, numbered zero through nine, which are
used in READ and READALL statements, a_ well as in the WRITE statement. At the

HAL/S level, all channel, are eqnivalent; it is only at execution-time that the channels are

auociated with actual devices. TI_ auociation is made in an implementation dependent
_' manner: it is mually done through some type of "job control language" or through com- ,

__, mands at an interactive terminal. The appropriate HAL/S User's Manual must be consulted
for detai_, in mint systems, however, ch_n,:l 6 is automatically associated with a line
Winter.

•; .,(

Z

]9800045]2-]:34

8.2I/O.ndCha,...S.,nt,

The channel number usedin HAL/S I/O statements must be an inteser expression which
is computable at compile time (i.e., cmnposed entirely of literals, constants, and the basic _
arithmetic operators). It is good practice to give a name to each channel via the REPLACE
statement,asshownbelow" L

/ REPLACE PRINT BY "6": -"
REPLACE CARDS BY "5":
REPLACE TERMINALBY "7";
DECLARE I INTEGER, S SCALAR, D SCALAR DOUBLE; _-

READ(CARDS) I, S, D:
WRIthE(PRINT)I, S, D:

et,,,

Namingchannels in this way has severaladvantages:First, if the channels arewell named
a the program will be more readable. Second, it is easier to change the number in one

REPLACEstatement than the channel numbers in a collection of WRITEqtatements.
Finally, it is possible to find all of the I/O statements which use a particular¢imnnel by
looking up the cross reference for the channel name. The naming could alternately be done

by declaring intejer CONSTANTs.

After the channel number, the remainderof the WRITEstatement .'omistsof a series of
expre_ions. There may be any number of cxpressiormof any datztype; any construct
which has been termed an expression in this book may be used in a WRITEstatement. In ..
the previous examples, the expressionshave all been simple variables,but they n_ay be of
any complexity. Thus, values that are needed enly for _utput need not be stored in a '
variable.A program to compute one of the roots of a qu_drvtic equation 10Yenscalarcoeffi-
cients A, B and C, might consist only of:

* READ(_) A, B, C; _
WRITE(6) (-B A C))/2 A;

Whenany type of dataaggregate(e4., VECTOR,ARRAY) is written, it is first unraveled _
into its individual integer, scalar,character, or bit components. These components or array•

a elementsare then transmittedto the external device.The sequenceis the sameas was
, _' described in conjunction withshap._ngfunctions in ChapterSix, For instance: :

DECLARE M ARI_Y(2_ MATRIX;
WRITE_6)M;

results in the components of M being transmittedin th_ sequence:

MS(I : I ,I).M$(I :i ,2),MS(I: 1.1),MS(1:2,1)J45(1:2,2)-,MS(1:3,3),
;" MS(2:I,I)...MS(2:3,,1).

o

o

.t"

r_A

. ,; qt _j

1980004512-135

TheWRITE Statement 8.3

When a d'_ta aggregate i_ unraveled in a WRITE statement, the original structure may not
be retained.* In the ahsenc- of the I/0 control functions (discussedin the next section).
all of the output from a sipgle WRITE statement ts placed on as few lines as possible, with
only spaces separating the operands and the elements c,f each operand. The number of
spaces placed by default between successive values (termed the default tab) is implementa-
tion dependent.

After the operands of the WRITE statement are reduced to a sequence of Integer. Scalar.
Character. or Bit components, each component is convened to its sta,dard external format.
which is a character representation of its value. Each of the four basic data tyt".s above has
its own format.

The standard external format of an integer is a string of decimal digits, preceded by a
minus "-itmif the integer is negative. Enough leading bla,lks are appended to make the length
of the resul' ,g string consti_nt for all integera of a given precision. This standard length
varies from ,. mpiler to compder, but is always large enough to contain any possible integer
value. Leading zeros are never included in the represent;,,:ion of an integer. The following

, table shows the output format of a few int._ger values for a compiler which assumes an
integer field width of 6.

Value Standard External Format

0 0
256 256

-32.768 -32768

Double precisionintegershastthe same format,exceptthatthe fieldwidth isapproxi-
matelytwice as large.

The standard e: erual format Gf scalars is scientific notation in a fixed-width field.

Scalars always take the form "bd.dddE±dd" or "-d.dddE:kdd". where each "'d" represents
a decimal numeral. Exactly one non-zero digit always apl_ara to the left of the decimal
point and poutiv: numbers are always presented with a leading blank. The number of digits

to the right of the decimal point and the number of digits in the exponent are constant for

any parlicular re,on of the compiler. Theq¢ numbers are always chosen so that all of the !
precision contained in the scalar can be presented. The fixed field width simpfifies the

,. p writing of code to re-format _¢alar values at will be seen in subsequent sections. The fol-
, • , lowing table illustrates the output representation of various scalar values on a computer

with an eight digit mantissa and a two dillit exponent.

Value S_ndanl External Format

S Oi 3.1415927E+00
1/2 5.000000OE-O i
-3 I/8 -3.1250000E+00

t .000| I .O000000E-04
- 1,000,000 - 1.0000000E+06
0 0.0

"Some imp_matat_a_, will pfmt inmates, om mw Inn ti_ autmmtkally, but tha is am a
Icq_emeat.

"V* •

#, *.-!

.;,_4

l)

¢

"19800045"12-'13(3

8-4 I10 endCka_ter St_m#s

Note in the table above that zero is treated as z special case. Double preci,utonscaian are
presenecdidentically except that the standard width of the mantissa is ipreater.

The remainin| data types, CHARACTER and BIT (inciudin| BOOLEAN), each have _:-
two smM_rd external formats. These formats are very similar, but one is moee _dtable for
printed IbtinilS and the other w more suitable for output that is to he read I_ck in by
another HAL/S prepare.

The plrolpmmmcrspe¢it'N..zwhich format is to be used for character and bit output by
means of the device directive. The device directive is not a HAL/S statement; it is a c(,m-
mend to the compiler which affects the way that suheequent WRITE (and READ) state- i

ments are interpreted. The device directive specifies whether the output on a particular _
channel is paled (the format suitable for printin|) or u_Is_ed (the machine-readable
format).

Pa_d output is orl;anized into lines and Pales. _nce the WRITE statement is most
frequently used to obtain printed dialmostics and results, paled output is Ilcneraliy the
default. _'

a

Unpalced output is simply a stream cf data values in a format compatible with the

READ statement. To desilp',ate a particular channel as unpaled, the device directive is used.
as shown below:

column I channel number 0-_ _

D DEVICE C|IANNEL,,6 UNPAGED
t :i
no semicolon

Compilerdixeclives n_y vary from implementation to implen,mtation. All present
compilers include the devic_ directive as shown above. Other directives are described in
HALLS Users Manuals. These directivn should not be consides_d as executable statements:

the presence of a device directive anywhere in a compilalma governs ,I//um of the speci-
fied channel

The standard external format of character stnnzs on a paled file is simply the content

• " _ of the sldnll, with no conventions or paddies. On an unpaltd i'de. the character sirra| is
encio_ in sinlde quotes ('). The output h'om the statement:

WRITE(6) "THE ANSWER IS', V;

will be:

_ ANSWER IS 7.$8.16210E405

on a peead 19e, _t will be:

'THE ANSWER IS' 7.$1L1621OE+O$

onM impqmlfllo.
i,"

4

\

__1 .ip {_

0

1980004512-137

Tht WRITE Stattment 8-.5

The standard external format for bit strings isa seriv, of ones and zeros. As in character
strings, bat output is enclosed in quotes on an unpaid file. A BOOLEAN consists of a singly
bit. so there are only four possibleoutputs asshown below.

Book_ln Value PalledOutput UnlzIlg,d Output

TRUE�ON I "1'
FALSE/OFF 0 '0"

Longer bit strings (see C_.lapter13) are output with a blank between every setof I_r bits to
enhance readability. The value HEX'1234 ° would be output as 000l 0010 00l i 0100 on a
palled file, and as 'O00l 0010 0011 0100' on an unpaid file.

For character and bit types, only the unpagtd format is compatible with the REAr_
statement. Since these types are of a variable iengtll :,nd may contain embedded blank,,

• the quotes are neededto indicate the end of one value and the start of the next•

In summary, th_ WRITE statement wil! evaluate a list of expressions of any data type,
convert the resullml values Io their standard external formats, and transmit these to the
device which has been associated wilh the specified channel. There are no restnclions on
the expressions in a WRITE statement, and in no case will any data be lost in the transla-
tion to the standard external form. As a result, the WRITE st_...ementis extremely easy
to _ if the format of the output is of little con:era; this makes st convenient for d_agnos-
tics, but less appropriate for report ilcneration.

• Exemk_

g.iA Why is it I_nerally con_dered loud pro_amminl; practice Io Ipve a name to each
channel for I/O functions and use the HAL/g REPLACE statement Io assignthe
channel number?

g.IB What happens when an executinM prolrim encounters a HAL/S WRITE slale_-nl
• foUowed by a list of expreuions? What Umitaticns are there on the exprcuions

a" _ that are klpd in a WRITE statement?
_4

8. I C Given the folk)win s declgrations:

DECLARE S SCALAR,

_+ ! INTEGER,
V VECTOR,

• M MATRIX,
t B BOOLEAN,

C CHARACTER;

+ p * •+ _........ _ ++ r

1980004512-138

8-6 I/0 and Chara('rer Strings

Which of these WRITEstatements will produceoutput compatible with the HAL/S "
RFAD statement

a) On a PAGEDdevtce? ;,
b) On a UNPAGEDdevice': :'_

I) WRITE(b) S. i. V. M:

2) WRITE(b) '. = " !.' V = '. V;

3) WRITE(6) V$1, V$3. V$2, B;
4) WRllE(6) B, C: _

5) WRITE(6) S, M. V$(2 TO 3), I; --

8.2 I/O CONTROLFUNCTIONS

Whenthe statement:

WRITE(6)M;
\

where M is a matrix, is executed, the three-by-three structure of M is lost• The anangement "
of the components of M depends only on the field width of a scalar, the amount of the
default tab. and the maximum number of characters per printed line. If the width of a '_
scalar is 13, the default tab is 5 and a line is 132 characters, then seven components will

printed on tile first line. and the remainingtwo on a second line. To obtain a better
arrangement,the following WRITEstatement may be used:

WRITE(b) MS(I.*L SKIP(I). COLUMN(I), M$(2.*). SKIP(I), COLUMN(!),
M$(3,*):

This statement will causeone rowof the matrix to be printedon each output line.

SKIP and COLUMN are i/O control functions. Syntactically, they resemble other
functions, butthey may only be usedas argumentsto the sequential I/O statements, WRITE,
READ, and READALL. Each has a single argument which may be any integer or scalar
expression: if the expression is scalar.valued,it is rounded to the nearest integer. These
functions do not return a value, but only control the location in a file where subsequent

data willbe read or written, ,:

¢ ' The i/O control functions may be thought of as moving a read/write mechanism across
a two dimensional medium. The SKIP, LINF, and PAGE functions cause vertical movement
and the COLUMNand TAB functions cause horizontal movement. In the example above.
"SKIP(I), COLUMN(I)" moves the write mechanism to the be,inning of a new line. "rh.e
SKIP function causes relative movement (down one line), am_ the COLUMN function
Lausesabsolute positioning (to the first column of the new line)

The sequence, "SKIP(I), COLUMN(I)", is implied at the beginning of each WRITE
statement. This automatic positioning will be overridden if the WRITE statement has
explicit horizontal and vertical positioning functions prior to the firstdata operand. If only
horizontal or vertical positioning is specified, then the default movement is partially over- '
ridden.In the statement:

, e i

¢

,.t _*

1980004512-139

t

l

I/0 Control l"unctions 8-7 !

WRITE (6) COLUMN(10). MS(l,*):

tile default horizontal positioning to column one is overridden, but the default vertical
positioning to the next line is not. Likewise, tile statement:

WRITE(0) MS_I,I). TAB(12). M$(i,2), TAB(12). M$(I,3):

would leave twelve blanks between the end of one component and the start of the next.
Unless overridden by explicit horizontal motion commands, a TAB function is implied '"
between each pair of data operands to the WRITE statement. Tile amount of the default ,_
TAB is implementation dependent.

Using these functions, an array of matrices:

DECLARE AM ARRAY(2) MATRIX(3,3); :"

can be output in a readable form by:

WRITE(6), SKIP(2). COLUMN(IO), AM$(I:I,*), TAB(20), AM$(2:I,*), SKIP(1).
COLUMN(I). 'AM--', COLUMN(IO), AM$(I:2.*), TAB(20), AM$(2:2,*), SKIP(I),
COLU._/hN(iO), AM$(I:3,*), TAB(20). AM$_2:3,*). SKIP(2);

yielding:

AM$(I :) AM$(2:)

The effect of the remaining l[O control functions, LINE and PAGE. depends on whether
they are used on a paged or an unpaged channel. On a paged channel, the LINE function's 2

argument must be in the range one to the maximum number of lines per page. The device

mechanism is moved forward until the current line nmaber is the same as that specified in
the LINE function. This may cause the device mechanism to cross a page boundary. The
most common use of the LINE function is to advance to the top of tile next page, as in:

a" _ WRITE(6) LINE(I), 'This is a page header';

When used on an unpaged channel, the LINE function causesmovement to an absolute
line number within the entire file.

The PAGE function may only be used on paged files. PAGE(n) results in relative move- _

ment by "n" pages; the current column and line numbers are not affected. A typical use of .:
: the PAGE function is to skip over unwanted pages of header on input, '.

:¢

.-1

_:. .J

f

]9800045]2-]40

.'¢ ,_ I '__am! ('hr.,acre, .'_:r:ng.t

TIle preceding paragraphs apply equally to MI nnplcnlenlations of Ih¢ IIAL/S language.
I'h¢ |_rlfl¢lpa] _.arlatlons between Ilnplementall_ms are the nlllnbeF o|" cohlnllls |_l lille

} qand line,_ per page) and tile r_,'sultof requesting backward IIlOw.'lllent Of the read/write
Ille¢llallls111.

File statenlel'tl

WRITI:(ts)"RFSULTSFOLLOW'.TABt 14), " _': g
(

ma} have an._ of ,,everal re,',uits, depending on lh," compiler ill use, (hi some systems, tilt" :"

two character strings nta_.'both be printed ill tile same ¢ohlmns of the same line, yielding:

RI:SULTS FOLLOW. On other systems, title second character string may overlay the first.
yielding just the underscores. Sllnilarly. backwards line movement may or may not he

supported and may be device dependent, tile effect of executing SKIP(--I) may _a_' from
system to syslem.]'he relevant User's Manual should always be consulted befi_re requesting
llCg3tlve _'(lhll|lllor lille lllOVOlllCnt.

l'h¢follownq,'tablesunuuaritesdie I/0controlfunltions

a
II0 Control Function Operation

SK IP(K _ Relative lille movement

Lille --- (Line+ K) nzod page site

LINl:(KI Absoilit¢ lille luO'I,elllent
Line _-K

I'AB(K) Rei:ltiv¢ cOlulnn IllO_,enlent
Col = Col + I_

COLUMNiK) Absolute cOhllnnnlovelllPnt
Col ---K

PAc,iI:(K} Relative pa_' movenlent
Page = Page + K

E xerci,,tcs _"

8."A Consider tilt' Following HALLS statements:
• it

DFCLARi" ARRAYS3) MATRIX, MAT ARRI. MAr ARR2:

WRITl_ioitMAT_ARRI. MAT ARR2:

ll_C" ."

?
}

It

' 6

¥" f

1980004512-141

!

• o

_" The READ Statement 8-9 _ _

: a) Describewhat the resultingoutput would looklike•

: b) Change the WRITE _tatement such that the resulting output will be formatted _

as thus: _

_i ,! [MAT _ ARRI I:] [MAT _ ARR21.]. _ _"

[MAT_ARRI 2:] [MAT-ARR22:]

' [MAT_ARRi 3: i [MAT_ARR23:] '_i

8.2B For each of the I/O control functions below, which of the following statements !
apply to its use in HAL/S WRITE statements?

i a) defaultcharacteristics(impliedunlessoverridden) _:
b) causesabsoluteverticalmovement

c) causesrelativeverticalmovement

d) causesrelativehorizontalmovement

a e) causesabsolutehorizontalmovement
I) LINE(I) 5) COLUMN(1) "

2) SKIP(1) 6) SKIP(0)
3) TAB(20) 7) SKIP(5) ::

4) PAGE(2) :.

8.3 TIlE READ STATEMENT

The syntax of the HAL/S READ statement is also quite simple. Some examples (e.g.,

"READ(5) A, B, C;") have already appeared in this manual; the general form is not much
more elaborate. The READ statement consists of the word READ and a channel number

followed by a hst of variables and/or I/O control functions. The 1/O control functions used
in a READ statement work the same way as in the WRITE statement.

When any type of data aggregate appears in a READ statement, the components are

fdled in the "natural sequ:nce"; i.e., in the same order in which they would be written.
In the code:

DECLARE A SCALAR, V VECTOR, I ARRAY(2) INTEGER DOUBLE;• it
• READ(5) A, V, !;

data from the external file will be assigned in the sequence:

. A, V$1, V$2, V$3, I$I, 152. T
L

if the file was originally produced (stored on disk, punched on cards, etc.), by a HAL/S _
WRITE statement, its contents will be in the appropriate format for the READ statement. _ _,

Except for character and bit strings on paged files, the standard forms produced by the J
WRITE statement are all acceptable on input.

Input data prepared manually may be written in free format; all of the following lines '
are acceptable input for the READ statement above: :

l •
- f

] 980004512-] 42

8 +]0 I/0 dt d (+h_'r_t t('r Str tgt

a) O. O. O, O, O. O

b) I 3E5 3.271E_'-O6 .0OI 24 =

¢) 1. 2 3 4. 5 6

The examples illustrate several points, First, it is not necessary to distinguish between

integer and scalar values. Any sequence of characters which comprise a valid integer or scalar
literal (as described in Chapter Two) Is suitable to be read into either an integer or a scalar;
however, not_-illtegral values read into an integer will resuh in a runtime error.

Individual values (m this case, numbers) m tile input file must be separated by blanks
or other delimiters. One or more blanks, a single comma, or a ssngi¢ comma and any number

of blanks are all eq_.uvalent. Multiple commas are a special case. wl_ich indicate "missing
data". If the inP,lt file ¢ontailled

I.. 2. 3. 4. 5

l

then the value of the second scalar it,A the READ stateqlcnt above (V$1) would not be

changed.

When., semicolon is encountered in the input slreal11, tile current READ stalelnfnt is
terminate_l. If Ihe iltput collsisted of:

1.5, Z.6:

then only two values would be read, regardless of subsequent values and punctuation ul
the file. This fact can be useful when a program inust process a variable num_'r of input
values. For mstallce, a program to sum a sequence of numbers could be coded as:

H ADD;
H PRO{;91H;

I'1 D_CLA_E TOTAl. SCALJII_ |NtTZ&L(O) AUTt_elATXC;
H PEC_._I_E A APRAYIIOOI SCALAR XNZTZAL(O J;
el e[Aotsl IAJ;

1't 00 FO;_ T[I1POPIRy I : I TO 100 ONTZL k : O;
S 1

• II el TOTAL : TOTAL + A ;
a S Z

H D_O;

el I'/RITLrl6! 'TOTAL Z$ '* TOTAL;
H CLOSE AOD;

/
One valid input to this program could be:

*_ --3.95. - 17.31, -9.93, 572.35, -250, +l.iO, -.45. +7.50,

I,I this case, the READ statement would terminate when the semicolon was reached, leaving
"' tile rest of tile array (AS (9 TO lOOt) equal to zero.

-:_. , +

". +_

+;

1980004512-143

:" i

iTheREAD Statement8-II

As illustrated above, a READ statement may take data from many lines of a file. Lines i
will be processed until either a semicolon is reached or values are found for all of the oper-
ands of the READ statement. The end of each line of input (e.g., card column 80) serves

as a delimiter equivalent to a blank. Hence, individual values may not be split across lines• 'i

• As in the other sequential l/O statements, WRITE and READALL, a SKIP(i),
COLUMN(I) operation is im;'qed at the beginning of each READ stat.'ment. This may be -;

_: overridden by the same means used in the WRITE statement; e.g.,

READ(5) SKIP_O), TAB(OL X,

can be used to read data to the fight of a semicolon which terminated the previous READ _;

statement, if the input data happens to be stored in fixed card columns, then the TAB and
COLUMN functions can be used to skip over unwanted data.

Any attempt to read past the end of a file will result in a runtime error. Chapter Ten

describes a mechanism for recovering from this and other errors. .;

a EXERCISES '_

8.3A Let the program ECHO begin as follows:

ECHO: PROGRAM;
DECLARE INTS ARRAY(3) INTEGER INITIAL(I), ',-

SCALS ARRAY(3) SCALAR INITIAL(0);
READ(5) INTS, SCALS:

What will INTS and SCALS contain given the following inputs? i

a) 8, 7, 6.55, -I, 2.25E2, 4;

b) -IE-1,,,7.2;

c) 2.49,,2.5 i ,2.49,,2.51 ;

8.3B Suppose input intended for the program ECHO of problem 8.3A has been formatted
as follows:

," _ Col. I Col. 8 Col. 78

_.NTS: 3 4 5 00000001

SCALS: 6.1 7.2 8.3 00000002

Modify the READ statement in ECltO to ignore the labels on the left and the "_
sequence numbers on the dight, and read in the values for INTS and SCALS
properly.

c"

w
?

?

h :

1980004512-144

,_'-12 I, ('} dnJ I 'hd_t_'t_rr StetnX,v

li.4 CHARACI'ER STRINGS

A IIAL 'S ,'Ill, rill|or _ariahlc lua._ ¢l_nt.,im,_._lnllg of ,'|l:lractcl._. t|;l" nuu|l_'r of vii|fac-
tors is dilL_wcd to _ary ._l rilliJllllL' l'rOlll IL'UOil|_ tO :i III:IXJIIIUlll AJIL'¢ll'iqiJ In ih¢' dt,'L'JdPJJlOll

Of till' _;In_ihJt', |'i1¢' t'Jl_l_l_'lL't ddldlYl_" I% t|t%'J_lrt,'¢l lit till' %:llliL' _L'llL'l'_l| W;I)' _1,%otJlt'r zJdJd

t yI_s. c4z..

III-CLARI SI'ARS t'IIARACi'! RtSI INII'IALI'U**_') ',

111cv,.Indblc S]',AJ_S is '_ <11-',r_-lcr$ll'Jllj_ of" It1_l_jllltlll| i('ngth five drill mlti_ily 07,11.
f-'ZllllllgfiYq;istcnsks,l'_IchLh:irJ_'tcrv_ll-idJ_lc11_sBoth _lnla%ii110lnIcnglll:illd',l_'lirlx'ilt

Icn_zllz,I'hccurrL,ntIczzl_tilIs',djustcdc_'cryluucthew,n-',hlcisJ_igm,d,lilou_llzlc-',nnever
t_.'c,qtl¢greater tiZdtl tile dcclillX'_ ni_xinlom. If tile I_'ngtil of till" string Oll Iht" riglli41_ild
side of an :z_im_nlc1_t¢_,cccdsthe 111aXilliUlZlIon)lib of the ta1"_i,t _'ariablc, char,tc:,,rs ar_"
IrI111¢',Itcdfrom II_C rib|it bct'_r_ ,z.,,._ig11111CltI,|It the' ¢L_,|chcI_v,', RAI'IN_; starts _'ilk ,,1
]CtlgtJl of IL,_} l,it is inlt1_lhlz,t| to t]l_° llui] strtnt_i, _uf dltcr the ,,1,_.si_nillCnlthe _'or_,ilt
]cn_tll bcco111cslillX'c

i)I'CLARF RAI'IN(; ('IIARAt'I'I..R(5) INII"IAL("I.
I)FCLARI. L.)UALII'Y INTFt;I:R INIFIAL[3).
RATINt; = S'I'ARS$[II'0QUALI'I'Y).

As shown, tile gcncP,iI form of chal_,tclcrsilhsCrll_tillg is II1¢ _iilllc ',isvector suhscl'ilqini,_,
¢_¢fltt lh',tl lilt" t'idlll ol'_! plli'liti011 |toes IlOI II',ivc io bt' I_llown ',it ¢ollIpllc-[illlC.

ill illlLIliil111 Ill lul_sLripilll lii _'hiirll¢lcr sldnil Io pick oiii Ii Slll,glt"_']lllrll'li'l or .,i till_-
sll'iilg. IIAL :S pl%_tldCS|in Ol_Cl_,ilorI'or llUliillg two ._ll-Illll_ iogl, ihl'r, illiS is IIic i'_ili'iiilii_n
Olll'l_llor. iI¢11oli.d bl,' lilt, I_i.y_,'ol%l"('.AT" or I_y Illl' slln "" I I "'. 1"hi"¢fl'l'cl ill this opi.,riltor
is IO lippl'nd the right-hand i_ilcl_nd to thc end of lll_' Icl'l-hlind opr_lnll:

'All#." II 'lll"_l:'

_'lclds.

"AB('III;I:'.

t ('il..irdclCr stlinlls nill)' also bccoillpdl%'d wiill ellcil oiht'r, as in
t"

" I1: lAl'lNt; NO| = 'till TIlFN l:Xll',

lind ilil_ _lc¢o111pllt_d|'or "lil_at_'r than" or "'le.,,.stlllu" us ol_.lcrto _rt illcln lllpIllibctic_lll_'.
.] Till' Jitter capability is lilTs'clod by thl, ,_oli_ltlng sequence'lllttl i._thcl_.'l'o_, uupl_'lliClltlllioll-

tl¢ill'nill'ili, lllol_ ilctails l'lln hi'I'ounil ill ihl" apl_l_lllri_tc ll.i_t lllilllli',ll.

itlLlS also Iwovid_.sI l_l of bllill-in <lliil'l_l_l I'linciions Ilisil'd in lplt, ildi% A). +I"11¢
<i f'ollowing ilanllllphl ill'sciibe SOllii' ill" I|il'._i, funi_'liOlll li$ well as tll'O¥iihllii soinc llricticil

Lxlnlplrs o1"_'llll_l_'l¢l Olk'nillollt.

?
i

1980004512-145

q

,- ,, j

Character $trmll 8.13

One of the major uses of character variablesand operations in HAL/S is formatting out-
put. In the WRITE statement below, the value of the integer variable N will be inserted
ina lineof output: .,

DECLARE N INTERGER; :.

• WRITE(6) 'THEANSWERIS ',TAB(0),N,TAB(0),' FPS'; ";

if N is six,theoutputfrom thisstatementwill looklike:

THE ANSWER IS 6 FPS

"_m statement illustrates an important rule: whenever an integer or scalar is used in a
cha_cter expreszion it is converted to its standard external format (a character string),
The standard external format of an integer includes leading bla;iks. These blankscan be
removedby means of the TRIMbuilt-in function, as shown below:

• wRrrE(6) 'THE ANSWER IS ',TAB(0),N,TAB(0),' FPS'; _.

Thisstatementwill produce:

THE ANSWER IS 6 FPS

The TRIM function removes all leading and trailing blanks from a characterstring. Its argu-
ment must be a characterexpression; thus N is converted to character before the invocation
on TRIMin the statement above.

Similar character functions are RJUST and LJUST. which add leading and trailing
blanks, rezpectively, Each of these functions takes two arguments, a character expre_on
and a field width, These functions right or left-justify the value of the character expres.
_on in • field of specified width. WithN- 6, RJUST(N.2) yields' _"and I.IUST('XYZ'.4)
yields'XYZ '.

Note that within the quotes of a character literal, blanks are treated the same as any
other chiu_cter.Any character may be used in a quoted string.

•

.¢

v

1980004512-146

,'¢14 I 0 ¢,nd {'h,;ract¢_ .'_'trmlt_

Like _ar)ables of am.,data t.vpc, character .,,tnt)gsmay be arra._t'd.111cfollowintt func-p

._" lIon t'ollld be U.,_.'dto dtsPld._, Iht` _,ahlt` of a bt_>lCall I.B) I11 the I'orln-,tspecified by all
tntt`gt`r t I'YPI' I

M STAT[:
H FUI_TX_NIO. TYPE) CHAI_ACT[III|I;

Is TYI'_l xHTIGEIt:
H O[CLIIII! ¥1S AI_IItAyI4)CHARI(:TllII51 IN|TZALI*TIIUI'_ '_1'* 'OPEN', 'VILIO'I"
M O[CLAIIE rio JRR&Y(_))CHAI_ACTI)IIS)|N|TIrALI*EALSE * , 'OFF', 'SHUT', 'ERHOIII*1;
!
ft |E !1 TH[H
Z
H g[TURN _|S ;
S T'_P| :

n ELSE
! ,

| I'1 lit ll't_H I_} ;
S TYPI:

It CLOSESTATI_;

]'his flillCtlOll Could be tnvokt'd as showtl below

I)F('I.ARF BOOLI:AN INITIAL(()I:I:_, VALVF. POWI:R,
WRIFI:(I_ 'VALVI']='.S I'A I'F(VALVI_,3L'POY,'i:'R:',STATF(POWFR,2),

I'hist`_ampk"would I_rodu¢¢,

VALVF=SllUT POWI_R=t)FF

"]']lt` ¢onCt'pts of IllaMnltlnl Icillzth ant| Clam'llt ICnl]tll apply to t',j('/I CI_'/H¢'/I/oi" drl array,

alld to lilt" _aiu¢ rt`tunlt'd b) a ell:in)clef I'till_'tit:n, i'ht` nlaxiltlllm lengths of all t'l¢lllt, nts of

a ch-',racter array art, equal, but tht` currczlt Icnsths may vary. Fhus, tilt' It'ngtlt t_l'tile valut`

rt'turnt`d by STATF can vat3' i'l'tYtll two to live. Tilt" Illa_itnum It`n_th on the functioll.
ht`adt'r can nt'vt'r be t'_¢t't'dt'J, howl'vet, if "RI:I'URN "AB('i)FI:II':'" was t,xecutcd, th_

• • strint_ would be tnmcatcd at tilt` rigltt ytt'ldtnl: "ABt'IW'.

It should b_.' nott'd Ill tile ex:inlplt` ahoy)` that tht` n th)'It'rot'lit of a ¢ltaractcr array slK'h

as Y|'S is rt'prt, st`ttlt'd b_, "'YI-S$_N.£" and not "'YI'SSN". *I'll)' trailing ,.'olon mull bt' slip-

pht'd to indtcatt' tilt' abst'tlt't' ot' ¢ompotlt'nt subs¢liptitlg just as in arrays of _,'t't'lors, inatfict's

. and Bit Strinl (Boolt'ansL As hI'fort', both array and ¢oznl_tlrnt subs_'ripts may hi' suPi_lit'd
it" hi'eat`d. YI:SSt3:2) is tilt` st`,.'ond ¢ltar'actt'r of tht' third t'lcment ol" YI'.'S. 'P'.

A few cxanlples of automatic COllVt`P,tlon to charactt'r tyl_.' Ilave apl_'at_'d abtY_'el It is

also possible to t'_tpli¢itly ¢onvt'rt to ¢itaractt'r type via the CIIARACTFR shapin8 I'un¢lion.

'l'hL_ function is syntactically idt'nti¢al |o the IN'I'I_GbR, _'ALAR. VI:CTOR. and MATRIX

i_a.*

,r j

1980004512-147

.+

Chrtmrrer StriPtf_ $13
+

shapint¢ functions de_ribed previously. It converts its argument or arguments to their

standard external formats. It has an additional form that allows conversions to octal or
hexadecimal as shown below: !

WRITE(O) CHA RACTE RS((a_"q')t RIT(N D.

if the integer N is equal to 29, this statement will produce the output:2

_000000035L

When the CHARACTER function is subscriptedwith a radix _O_CT or (_HEX), its o_r-
and must be a bit strins. The BIT (unction above is not full) detmrilxd until Chapter 13,
but in this case it merely returns a bit pattern equivalent to its a_ument.

Anoth_.r use of the character manipulation t_cilitiet is reading data th,'t is not in the
standard IIAL/S format. Integer data that has been punched on cards in the format shown
by the table below could be read in by the HAL/S statements which follow it.

, Input Format

Columns Description

I-3 case number

4 -5 age
6 I=male. 2=female

7-10 X factor

Example of Input

1152012781

M aGE t
15 PIIOOIIAHl

fl DtCL_II C O+IlACTINIIO)I
n DECLAIE DITIG|I,

15 CaSE NUll, Aat, SEX. X|
E
fl It|lOlLL¢ S ! Ct

l f fl CaS| NUtl • ENTIiEIIC)ls I To3
• d

It
It AOt • |NTIIENIC 1;
s tvos

| °
n ||x an|NTIIIfllC II
11 4,

I l
H X • |NIIUlIC II
S ?TOll

el I_LOll 114111
jlll i

+
I"

i +

I I i mill I I|I_ _ "

Ib

%

"t

, ,__+_r_ + + , +++_ ,,I _j

1980004512-148

8.16 I/O and Churacter StrmgJ

This would yield the following values:

CASE NUM = 115 +

AGE = 26

SEX = I
X = 2781

When the argument to the INTEGER shaping function is a character string, all of the

characters must be in the range O- 9 (i.e.. comprise a vahd integer). Titus. this code would
not work if the CASE NUM field (for instance) was coded with leading blanks instead of
leading zeros. The TRIM function can be used to make the program more tolerant as in:

CASE NUM = INTEGER(TRIM(C$(I TO 3))); +

The READALL statement .sad to obtain C from channel 5 (probably a card reader) will
be full) described in the next section of this chapter.

a Since the standard external format for scalars is not always convenient, a character func-
tion like the one below can be used to write a more readable XX.YYY notation:

II REFI_IPIAT :
II FU_CTICNIX, OI[CEHALS, WIDTH) CHARACTERIZO);
n OECLARI[x S:-LtR,
n OECIrlALS INT|GER,
11 IdIO rH _NTEGER ;

C X IS THE h'U_3Etll TO 8[CC_VE_TEO, QEcInALS IS THE NIJIqBER 01
C DIGITS TO BE P_ZNTE0 AFTER THE 0[¢IPtAL POIf'T, AfJO UIOTH IS
C THE TOTAL LENGTH OF THE STRING IIETL_N[O

14 DECLARE Y SCALAm;
rl OECLJtR[C CHIRACTER(Z0);
H 0ECLAIr[S ¢H,LRACTIIH 11;
N 0[CLAR| ZEROS CHaRACTER(Z0) C_STANTICNJtlIiI0_ 0');
li IF X < 0 THEN
n oo;
II Y • -X;
|
I1 S u *.'1
n II_;
It ELSE
n O0;

a" II n Yug;
|

dr II gu *;
n |Hot
I[, OECIhILS
It C • ¢HAJIACTEIIIZNTESIII (IS Y))!
$ iOgUILE

H IF LEH_THIC) < I_EC|HALS THEN

11 ¢ t ZIIIOS II I
S I TO 0ICIHALq-LINSTNICI

I , , .
14 IITUm4IJ_m$ II ¢ II '.' II ¢ , UlO'tr'tq)Z
I | TO I-OECIHALI I*OtCIHALI-I TO I

H CLUE lllPOllml.T I ++

i i i ii

: o4r"

i,,P,
++ I" +

• ,q.+
;, "a+i

• _+

i

1980004512-149

/
J

7

1Ctw_cttrStri_z 8-1?

Withthe function before, :1
&

WRITE(6) REFORMAT(SQRT(2), 3, $);

would yield: i
'1.414'; i.e., a five characterfield with three decimal places,

"_ Two new features are introduced in thit example. Fins, the expression "CHAR(20)'0'"
is a shorthand notation fcr the string consistinll of twenty zetrns, It b a character literal
which may also be used in anassisnment statement such as:

C = CHAR(80)' '; /*blank card*/.

An additional built-in lunction. LENGTH. is also u_d. LENGTHtakes a charactervariable "J
or expressionat an arlument and returnsan integer repreaentinllits current lenlth.

The REFORMATfunction shown here has one deficiency: wtdoes not check X for
being too large for a field of width WIDTH.A ;ood fixup woulo be to returnpart of X in
scientific notation if it b too large for the field. Th_ improvement is left asan exegche.

8

Exemlm

8 4A Which of the following expressions are legal character subscripts?Which are legal -_

vector subscr/pts?(Assume aUvariablesare of integer type.)

a) (4) {
b) (l+l)
c) (7 AT 3)

d) (2 TO I-2) t

e) (6 AT I+J) |
11TO l)

|) (K TO K-I)

: $.4B What_ theoutputbe fromthe followin| pretgntm?

PROG B: PROGRAM; +_• j
DECLARE Cil CHARACTER(I$) INITIAL('ABC');

• ' REPLACE PRINT BY "WRITE(6)";
: PRINT Cti. CHIICH. _"

CH " '!23'11CIlt 1'456';
PRINT CHS(! TO ._), CII$_$ TO W);
CH = CH$(I TO 2)I ICH$(3 AT _k-._);
PRINT CH, CH(#-2 TO #):

++ CLOSE PRUB_n; _

• _

_'.it" _

i

)

] 980004512-] 50

8./8 I/()and ('herectcr '_'rmlJ

8 4L (;ire. the following declarations a.d -,ssilznmenls,which of the to,owing compan-
sonsare tree? Assz,m¢that 'A' < "B' <... < *Z'.

DECLARE. CI 5.CIlARACTER(15)
DECLARE CHARACTER! I)

CII. C12.

C15 - 'A'.
Cli : "A'.

CI. _ • 'B',

a) 'A' s CII

hl C15 = 'A"

c1 C15 " CII
• d| C15 7 • C12

c) 'A' < C12

f) 'A' < "AB'

g) CII < 'AB'

h) CI5 < CII CAT CI. _

8.5 OTHER HAL/S I/O CONSTRUCTS

The READ and WRITE statements alrc,_d) described allow data to be |ransfcrrcd
between a llAL/S proirzam and a sequcnt,al character oriented file. The data is always
transferred in a standard format accordinll to its lyp¢. though 1/0 control functions allow

arbitrary positioninlt of the data. Since character operations allow output reformallmlt, the
addition of an unformatted read IREADALL) pv_ the programmer complete control
over sequential character files.

• _ HAL/S also supports random-access files, which do not neceslarily contain charac-
ter data, via the FILF statement, and provales some features which aid in tran*Xemn| data

• # to and from special purpo_ _nsors and effecton.

1980004512-151

Othte tlAL/$ I/0 ('nnslrbcls 8"19

q.5.1 The RI_ADALt _,-K.mem

O_le example of the READALL statement.

DECLARE C CHARACTER(80):
READALL(5) C:

was used in th6 previous section. Aside from the READAL| keyword0 the format of this
stalernent is exactly that of the READ statement, althoul_ a restriction is made that all var-
iables be of character type.

The READALL statement caminput up to one line of ¢hacactelu from a HALIS channel',
the characten read are placed directly in the character variable or wriables _lthoul any
speciad interprehJUon of the delimiters blank, comma, and semicolon. Characters are tram*
leered until either all of the variableshave been filled to their declared maximum lengths, or
the entire line his been read, whichever comestint. Unless the READALL statement helms

a with I/O control functions (e.g. SKIP, LINE) the device mechanism is advanced to the he-
sinnin| of a new line before the tint character is transferred.

When a list of variables or a ,:har4cter anay is specified, each variable or element is tilled
in turn. There is l_o automatic movement of the device mechanism between variables. This
shows a llne of data to be broken into fields: a cam could be read as eilght IO.character

fields by:

DECLARE CARD ARRAY(g) CHARACTER(10):
READALL(5) CARD:

I/O control functitxm may also be used with READALL. Usinll the declaration above,

juat the flint alsd last fields could be read by:

READALL($) CARDS(I:), COLUldN(? I), CARD$(8:);

_EADALL uses the same sel of channels as READ and V/RITE. Input _ ouIptlt
should not be mixed on the same channel, but READ and READALL may both be used

on the sarne input file _ even the tame card as in the followinll example:

,4

• r

B

1980004512-152

8-20 1/0 and Character Strings

M OUTER:
M FRO_,RAM;

M DECLARE SCALAR,
M PtlZ, ALI_ttA ;

M O[CtA_[ZHZTIAL rOSN VECTO_ O(XIBL[;
M OECL,tRE MODE INTE_rR,
M PRZNT BOOLEAN;

("

C
C

t
tl INITIALIZE :
N I_ROCEOI._[;

M DECLAPE V NJ'IE CHAgACTER(B); "
M REF-LACE ZNFELE 5Y "$'*;
n O0 t4HZLE TRUE;
M RE_DALI I ZHc|L[I _,_AME;
M VH_ME * TP:M:VNAME ;;
N _F _HAM[: '¢HZ' THEN REAO(ZNF]rL[) SKIP(O), COLUMNIgP, PHIl;
11 ZF _,_IAME I_ *t, LPHA* IHEN BEAO(INFZLEP SKZP(OI, COLUnN(g|, ALPHA;
H ZF VNAME = '] FOSN' THEN REAOIZNFZL_)$KZP[O), COLUMN(9)t XNITXAL FOSN
M IF VnAME : '_)E' THEN PEAD_I_FZLE) SK|P(O), COLUt_N(g}, MODE;
M ZF VHAME 8 'F'kZNT* THEN F;.IOIZNFELE) 5LZP (OlJ COLbq'lN(9)* PRZNT;
el tF V'.*&ME = *[t.'D* THEN EXT';
M ENO;
E
M ZF PR][NT THEN
t
n URZTE(6I ;1t][, ALPHA, INITZAL _U'IH, tlr_E_
11 CLOSE EI4ITIALZZE ;

C
C

: c
M CLOS| _J'*f._; . _

+ The INITIALIZEprocedure above could be used to read initml values for a simulation
• run.The input lines would consist of avaziablename in the firsteight columns followed by

an initialvaluein the standardexternal format/or that data O'P,',c.8.

4 _. PHI .00137
_ PRI_r 'r

I POSN I, I, I
_'. END

i This typeof initialization ,nodule takes little memoryand is fairlyefficient if there are
not too many variables. Its main advantage is that it is very easy to code, particularly if a

_-, parameterizedREPLACEmacro is used to abbreviate the repeated code:

,,,,,# #," /'..'..- , ,
'._,_ o'

3

1980004512-153

¢

RI-PLACI" I'! S['tID, VAR) BY °"
IF VNAMF = ill TltI'N RI-AIXSz
SKIP(O). ('OLL,MN(O), VAR".

?

l'l S I'('ALPIIA'. AI PIIA),

TFSI'('I F_)SN', INITIAl POSN):
y

eIc.

|:xert, is_ "

8.5.)A _Yh-',tIIAI,/S data tyl_'s nzay be read u_an,_tile RFADALL st.',tt,ment',_

8.5 IB llo_ _lre cllllracter strlnb._,"suitable for Illput vta tile RFADALL statenlent different

frolll lho_.e Slllt;ible for input Vl:l Ihe RFAD ,Malelllt,pl'? '_

I 8.5 2 Ille FILl- Siatenlealt ;"

I'hc i'lLI, slalelllCnl is u_'d to read arid _, rite r:mdom :l¢¢ess files. Ihe_¢ files t which an."

illllll_lert'_l .v.'parateiy from thdl/llpl_) ;.ire or),.alllled Illt(i rt, coru,_ vt, hJch iIl:ly be accessed ill

,m_ st,quezlce. (.encrally spe,_kmg, asl._ record Ilia}' _'_e rgzd or v,ntten ill tilt, same _lmount
of tlnle :.IS ;111y otlwr (Iwnfe tilt' tgrlll "ralldo111 ,ICCes._, '),

Tile FILF stalelllelll |111_, tWO f'OrlllS,

Fll,F(numbt,r, address) = t,xpre_ion,
.',nd

variable = FI| F(llumber. :,ldressL

Tilt" ¢Oll_trllc| f:lLF_ntzmber, address) is t'_llletl a lilt" t'xprc_,_lol,. When tile file t,Xltlre,'_lOllis "

used OIl the left of t!lt, equals sign (tile output file statt,ment), the vall:e ttt'"t,xpression'" is
written to tilt' record spt'cified by "address" on the file si_t,cztit,d b) "'number" 9.'hen tile
file expression is tiled on tile right h,;Intl ._itlt,(tile Input file ,%latelllellt}. tile el,cord denoted
by tilt" tile expre_lon is rt'ad into "varial_le".

• _ "l'llt, FILF sf_itellleflt is hzghl)' inlplementation-dependent, tilt' appropriate User's I_llllltlal :
"_ shollltl be COllstllted I_el'ore it is IlSetl. _.
#

The "'number" anti "address" oper:mds of tile tile expression may be any integer or
scalar arithmetic expression. "'Number" mllSl be ¢Olllputable _t COlllpilt,otiltle. It' tilt ex-
presszon is scahlr, It will be rounded to tile nearest integer. The legitimate ranges of these
intei_.'rslilt"irnplenlentatlon dependent.

],
There are 11o _slrictions on "'expre,_ion" in tile oulptlt tile st_ltenlent. All of tilt' for

/ Iowint statements _lt_ letlal:

_l_ir'

_- .o, !

1980004512-154

DFt'LARt, MAI'RIXtlO.IO). MI. M2:
I)F('LARI: A ARRAY(t_qI INTFGFR;
I)FCI.ARI" (" CHARACTFR(20):
DF('LARF I INTFGFR INITIAL.(17);
RI:PLACF IIIST BY "'_".

FILF(IIIST. 12} = MI:
FILF(5. I+1) = MI + M2**T:

FILF(IIIST,8) = M15(2 1"0 ",*l;
FILFtlIISI",q_ = A+I.
FILF(IlIST,10) = C I] 12

There art,, however, soln¢ restrictions Oll "variable" ill the InpUt ilk. _;tatelnellt. These

art. the _lllle A'sfri,'dons that apply to assign parameters of I_rt_.'etluIx's."Variable" must
be one of the follov, ing:

l An ttnstthseripted variable.

2. An el#ties"array ek .,'nl.

a 3, A t'olttl.t_l+Ol#_Partition of a ,_lngh"vector or matrix,

I'he followmg Itlput file statetltelllS al't.,all legal:

MI = I'ILF(IIIST,2):
(" = FILF(3,,1):
A$I = FILF(4,4),
MIStl,*I = I'ILFtS.oL

It Is not pos:_ible to IX'adinto a nolt-_'ontiglnOtlti partition ef a MATRIX (M I$1*.It) or all
array partition (AS(5 TO I0)1 or a partition of a character strintt (('$t3 1"O#)).

Both verslOhS O;"the file statement cause the teat.seer of unft+rll|.'ltled binary data. Thus,
if the file statelllents art' tO he Used r_'liahly, ,l revord ,dmuM a/w,:r,s he re,ld ##to a varmH¢
of Ih¢" ,_:tl¢ tt'pt" dpld orfanl.'dthm a.+ till' t'vI_I+s,+jO;:lhdl It'd,s"wPLIII'li, since the ¢olnpijer
¢anttot kP.ow ho_ a file was originally written, it is up to the |'trogralttnter to ,,ItStlrc
_onlpatability.

a" + 8,._,3 Avhmics I/0

ltALIS dt_: not include tiny specific avionics I]O statements, principally due It, the fact
thai there is ct|twiitly no standardiz,tiion of airborne I]O systenls. Some flight ¢OlltpUters
have one or more _ndelwndent I/O p o,'t, mors or channels with their own unique instruction

ets. Other t.'onlptltt either have _'Pl.l instnictions for I/O t_r have a .'_'ction of nlentory
that is "hartl wired" to axles,.:; ..e: ices (e,lt, $torinll ilttO It_'atJoll 5432 Jtwtal] illight lower
the landinlt I,'ear).

Operatinlt systems also vary widely in this reltartl, In some systeras _.O is requested by
application proltrants, while in others it is all done "autonmtk'ally" on a Iwriodic basis,
Finally. every system will have a different complement of sensors, displaya, elTectors, etc..
each of which may have its own unique Ibrmatting arid pmtt_'ol requirements.

m •

_+ .. _+

1980004512-155

: Other HAL/S I/0 Constructs 8.23 !

Although there is presently no way to implement generalized avionics I/O as a HAL/S

statement, the language does provide a number of features that allow individual systems to

be tailored:

: I. Structure (Chapter 9) and compool (Chapter 11) templates allow a section of

memory to be mapped into a collection oF variables of assorted types.

2. Procedures and functions can be coded in assembly language and interfaced to a

HAL/S-program (see Chapter I !).

3. Bit strings (Chapter 13) allow low-level formatting via subscr/pting and logical

operators (AND, NOT, etc.).

4. I/O errors may be handled via the ON ERROR statement described in Chapter 10.

5. Event variables (Chapter 12) allows waiting for 1/O completion, and may trigger

transactions when signalled.

6. Each implementation defines a set of %macros which allow pre-defined machine

instruction sequences to be omitted.

The following code illustrates some of the ways that i/0 might be performed in alter-

nate systems:

J

R._L'e'E Gr_:_C_,'?,IBY "_;T.eG£RtOCT'Sq,3_:')";
M D[CL_'-_-=O0__;AV_REAOEVINT;
M CF-CL:,-'-r ,".f_ t':,"_- A_Ref(3_Tb7) BZT(16) ZNITIAL(NAME(IqULL));
M $T7_37c";.r IC--Ar.'I:
i9 10,_',;...E IP'TE_._,
M :ISTATUS3ZT(I"_),
M 1 rLh"_'; t::,L_ A_'RAY(IO) ZNT[G.rR,
M I ;_.'"35 I';T_.5:;_;

.rCLA;. F_.'25_$:'J$ ZOPAPtl-$TRUCTUREINITIAL(16, HEX'O', haJLL, -"7);
M D_.C'._eE:0 APSCECL;Et;C';HAL(1);
.'1 Pr.OL_-C-"CT$_S BY "1";

r: %$','C(q); /*PERCENT MACRO_/

H CALL IO|FIJDS[N_3:_S); /*ASSEMBLY LAIqSUAGE_/
E
M MEM : ON;
S GEA_D_.,_I:

M S-_$,_ALCO_NAV_R-cAO; /_[VEI'ITV_,_ZASLE_/
M ; /_NO-OP_/
M ._;_ ;

M CLOS_Ass:"r_oIo;
J

This program only indicates a few alternatives; there are many other possibilities,

'4:

s_

¢

]9800045]2-]56

&-24 I/0 and Chancier StrmgJ

EndOf ChapterProblems

8A Writea HAL/S program that will read, from channel5,2 arrays of character strings

15 elements per array,maximum 5 charactersper string), remove leadingand trailing ':
blanks from each string, reverseeach string,and write the results on channel 6 in the

'_ form:

Column$ ColumnI$::

CHAR_ARRI I: CHAR-ARR21 : 2"

CHAR_ARR 12: CHAR-ARR22: _'_-_

CHAR_ARR !5: CHAR-ARR25:

8B Writea HAL/S programto perform the following task:

Input on channel 5 contains the names of SOpeople, each consisting of a first name,
one blank, and a last name. Names are separated by commas, the maximum length
of any name is 25 characters, and there are no blanks in the input except those fol- _
lowing the last comma in a line (no name is broken across two lines). The final
name is not followed by a comma.

The program should read in all 50 names into an array, and write on chan_.el6 all
nameswhose last name beginswith 'S'.

An example of possibleprograminput is:

SAMUEL COLERIDGEoCHARLF.SBAVOELAIRE,EMMYNOETHER,
WILLIAM SHAKESPEARE,TYCHOBRAHE,DAVID HILBERT, etc.

• tt Use the INDEXbuilt-in function described in Appendix A. "_

8C Write a HAL/S program that will read from channel 5 a I- to 3- digit integer, and
write on channel 6 the Englishequivalent, e,g.,

.. 173 -* ONE HUNDRED SEVENTY-THREE _
0 "* ZERO

15 -4, FIFTEEN etc.

1980004512-157

\

D¢clarmE and Relerrncml Slructures 9.1

9.0 STRUCTURES

IIAL/S structures provtde a .nea,s of collecting a grottp of vartablt's ttntlt.r a singk" namt'
This grouping capahilily has a number of tl..tes,one of which is illustrated below. Suppo_" a i

"" utility ftmction which requires ma,y parameters is defined at the outer level of a prt)gram .
and invoked fron| lower level c(_le as shown below:

I1 OUTER:
rl PROGRAM;
n 0[CLAR[SCALAR(,
It GI, G_';
I1 UTZL:
fl FUt4CTZONIA, B, C, D. El VECTOB;
n DECLARE A VECTOR;
H DECLARE SCALJR,
1t B, D;
11 DECLARE C |t_TEDER,
N (BOOLEAN;

C :
C
C

E - ,:
fl RETURN A;

N CLOSE UTIL;
H KESTEO:
I1 PI_OCEOUPE;

C A rROC[OURE 14.1ION IN%OKES UTIL

H OECLARE RESULT VECTOI_;

Iq DECLARE V VECTOR INITIAL(O_ 1_ O);
Iq DECLARE SCALtR,

H Sl. S-';
11 DECLARE C INTEGER][N_TIAL(8$)*
tt [BOOLEAN INITIALIOFF);

C
C
C

n 51 s G_ • 3;
I_ S_ I SlNIGI * G_I;

II RE_ILT • UTIrL(V, Sl, C, 51_, E);

C

• I_ C
a C

II CLOSE NESTED |

C

< ;
_. It is adva4_tageous to keep the actnal arguments pa._d to UTIL (i.e.V. SI. $2. etc.)

declared at the lowest po_.lible level because of the protection afforded by _'op:..I rules, and ._.
to show thai the_ variables "belong" with the NESTED code bh_:k. On the other hand.
some inefficiency result_ from passing all five parameters separately. The code in the next
figure shows how structures can be uted to redut'¢ the n,mber of UTIL parameters to one.

r

r

e,

J
h ,

]9800045]2-]58

Iq 0_JTER:
fl F_OGRAft;
M OECLADESCALtl,
It GI* GE;
/I STPUCTL_[UI"IL_Ptgn:
tt I V VECTCW_
It 1 Sl SCALAIt,
M I C INTEGiR,
I1 I S: SCALAR,
N 1 [BO:SLEAtl;
It UTEL:
Iq FUNCTZON(X | 'v[CT(]_I;
M DECLAREX UTXL__AIt11-STI_JCTLME;

C
C
C

!
11 RETU"PHX,V;
M ¢LOS[UTZL;
M NEST(O:
H P_OC_OL_[;

a N O(CLAPERESULTVECTOR;
11 OECLtR[LOCALUTII,. PARH*STRUCTUR[|N[TIALIOt |, O, O, 8S* 0,, OFF|;

C NOTETHAT THE TE_'tPLAT_"ZS NOTa[PEATEO

It LOCAL.S1 • Gl / $;
fl LOCAL.SE • $IN(Gl * GEl;

C
C
C

E " *
M RESULT• UT][L(LQCAL);

C
C
C

I1 CLOSE11ESTI[O;

C
C

II CLOSEOUT|mti
k,,

• IP

,¢

Several new lanlmalle constructs are used in this example. First is the statement beilin-

ning with "STRUCTURE UTIL PARM:". This statement creates a stnwture teal)late

' named UTIL _PARM which defines the layout of the UTIL. PARM-STRUCTUREs declared

_"'_r. In addition to structure declaration and initialization, the example shows references

the components of a structure, struct,re terminals, such as "LOCAL.SI "" and an entire

_t, Jcture,LOCAL,

"lhenextsectiondescribesalloftheconstruct#usedintheexample,althoulhromeof
themorecomplexform#,,redeferredtotheendofthechapter.

,¢"

,r

e

b

1980004512-159

Declarlng and Re]evencmg Structures 9.3

9.1 DECLARING AND REFERENCING STRUCTURES

In the statement:

DECLARE LOCAL UTIL PARM-STRUCTURh INITlAL(O.l,O.0.83.0.OFF):

the phrase "'UTILpARM.STRUCTURE" takes the position usually occupied by a data
type. This is actually consistent syntax because X-STRUCTURE. where X is a template
name. is a data type. llence, a template name with the word STRUCTURE attached by a
hyphen can be used m most of the constructs from previous chapters which require a data
type or "type specification". Examples include factored declare statements such as:

DECLARE UTIL PARM-STRUCTURE,
LOCAL,
Xo

Y INITIAL(1,2,3 A,5,6,TRUE),
• ZERO CON STANT(0,0o0,0,0,0.OFF):

and function type specification, as in:

SHAPE: FUNCTION(A,B,C,D) UTIL PARM-SI'RUCTURE:

h is important to note that STRUCTURE by itself is not a data type: The type of a
structure is entirely defined by the layout of its template. From this rule, and the descrip-
tion of parameter passage in Chapter Seven it follows that when a structure is passed to a

procedure or function, the template of the actual argument passed must be identical to the
template of the formal parameter.

The cond_ _ions under which two templates are identical for purposes of data type
matching (it: parameter passage, assignments, etc.) will be discussed in Section 9.2. However,
the easiest way of assuring that two structures are of the same data type is to use the same

template in their declarations. In the example, the STRUCTURE statement which defines
the UTIL PARM template is part of the program level declare group. It can be used in the
declaratior _ 3f X and LOCAL in nested routines because the scoping rules for structure tem-
plates arc the same as for declared variables. Thus, a template defined at the program level is
global and may be used in declarations anywhere in the program.

• • In addition to parameter passage, entire structures may be used in assignment statements
and in the various I/0 statements. For example, a set of ten test cases could be run through
the UTIL function by executing the following code:

e

m

- " , -Ik ,,_, -. Q o

1980004512-160

O.d Structures

M OUTfR:
M r_03_tH;
M OE_LA_E 5CALtR,
M GI, G_;

M ST_L_T_E UIILPAPM:
M I V VECTOR,
M I $I CC_L:,q,

M I C INTEO(Q,
M I _ SCALAR,
M I t BCOL(_N;

M O_CLA_E ARO UT]L.PAPM-SIRUCTURE ;
M UTIL:
M FUN'_TION_X| V[CTeg;

M _[CLA_E X UTIL_PAPM*STRUCTURE ;

C
C
C

M RET_._N X,V;
M CL05(UTIL;

M 00 FO_ TEMPOqA_V I = I TO 10;

M RE^Oral k_S;
[,

M _gIT[lb) 'UTZL OF** AgO, 'z', UIlLIAROP;

M t_O;
h CLOSE _U1ER;

The statement "RFAD(5) AR(;:'" is functtonally equi_'alent to"

READE5) ARG.V. ARG.SI, ARG.(', ARG.S2, ARG.F;

In other words, the components ot the structure are read in the "natural ,q'quence", which
is the order in which they appear in the stntcture template, The components are output in

this same _qaencc when ARt; appears in a WRITF statement.

a t

• ¢

{

*r

G"

%
/

It

"%" : t

1980004512-161

TheStructureTemplate9-5 ._

Similarly,given:

DECLARE UT|L_PARM-STRUCTURE, A, B;

the statement:

A=B:

is equivalent to the sequence:

A.V = B.V;

A.Sl = B.SI;

A.C = B.C;

A.S2 = B.S2;

A.E - B.E;
a

Structure components, such as LOCAL.Vand A.SI, follow exactly the same rules as
simple variablesof the correspondingdata type. No restrictions whatsoever are imposed on a
structure component that would not also apply to a simple variableof that type. Thus, the
vector component, V, of a UTIL PARM-STRUCTURE,A, canoe subscripted,

A.V$1 = A.V$2;

used in acomparison,

DO UNTIL A.V$(2 AT I) = 0;.

passed to a built-infunction,

A.SI _, ABVAL(AW.V);

read, written, of filed, or used in any other construct in which a vector is allowed. Further-
more, there is no additional runtime overhead (either time or space) involved in referencing
a component of it structure ratherthan a simple variable.

j" P
Structure initialization is essentially the same as re'rayinitialization: the initial list con-

, ,r sists of a value or set of values fog each component of tire structure,separatedby commas.
The CONSTANTattribute is also acceptable. There is no way to write a structure literal, but
the CONSTANTattribute may beused to obtain the same effect. For example, a convenient
way of settinll all of the components of a structure to zero is:

DECLARE UTIL_PARMS-STRUCTU RE,
A,

5' D,
ZERO CONSTANT(0,0,0,0,0,0,OFF),

A • ZERO;

,¢,

ft, ;'" !

d,

1980004512-162

q'O ,_tructures

In addition to assignment statements, parameter pas,_ge, and I/O statements, ;:ompan-
son of entire .;truct,res ts permitted. As was the case with arrays, the only comparisons that
can be made between structure operands are equal (=) _.nd not equal (7=).

In thL,, ,,ectlon we have dL,,cussed all of the ways that entire structures can be used in
executable statenleiltS and madz the assettlon that components of a structure may be used
m any wa_, that sHuple variables of the _me types can be u_d. We have discussed declara-
tion and inittahzation of structures u,ing the template names as a data type. All of tile ex-
ampJe,_ ha,,e t,sed the _me t_:mplate (UI'IL PARML but the rules for creating templates
have been omitted and the naming of structure components has only been implied by e_am-
pie. In Section _}.2 we will clear up these points and show additional examples of the use of
structures. This chaph.r concludes with the presentation of two additional attributes: "'Copi-
ness", which is analogous to arrc,'ness of o:her data types, and unqualified structures, which

are easier to reference but more limited in capability.

J 9.2 THE STRUCTURE TEMPLATE

A structure template de._:ribes tin: layout of a .ttructure ia terms of the order and data
types of it,,, components. A structure template is created via the STRUCTURE statement.
This statement begins with :he word STRUCTURE followed by the name of the template
being defined and a color. The remainder of the statement ts a list of component de,rip.
tions separated by commas. Each compoaent is described by a level number, a name, and a
data type'. The statement below create_ a template named SUPER VFCTOR which has

three components'

SFRUCFURF SUPER VECTOR:

I V VECFOR,
I STATUS BOOLEAN,
I I'IMFTAG SCALAR.

The phra,_ "'1 V VECTOR" defines a componept named V of type VECTOR at level one.
These level numbers require _)n_¢ explanation, but I'it_t we will stat_ the rules about n,tmes

and data types.

I ; The name of a structure component may be any valid HAL/S identifier.

• _, 2) The names of ,-tructure components need not be unique, provided they can he un-
ambiguously referenced (i.e. structures A and B may both have a component named
X since they can be distinguished by referencing A.X and B X).

3) The components of a structure may be of an)' data type. They may be of single or
double precision and they may be arrayed.

Sine,. SUPEI_ _VECTOR-STRUCTURE is a data type by the definition in this chapter,
rule three above makes the following template legal:

STRUCTURE STATEVEC:
I POSITION SUPER VEf'TOR-STRUCTURE.
I VELOCITY SUPER_VECTOR-STRU£_FUrtE.
I A('CEL SUPER VECTOR-STRUCTURE;

i,.c_

, f"

It

1980004512-163

The Steuclure Template 9.7

Given the follov:ing structure declaration:

DECLARE STATE :_TATEVEC-STRUCTURE;

how arc the low-level components referenced? The answer follows from the information al-
ready presented: Since the V component of POSITION is named "POSITION.V", the POSI-
TION.V component of STATE may be relerenced as "STATE.POSITION.V". This process
may be carried to any level. Given,

STRUCTURE $2:
I STATE STATE.VEC,STkUCTURE,
I ATTITUDE_INFO ARRAY(3) VECTOR DOUBLE;

DFCLARE STATE2 S: _;TRUCTURE.

the components are named:

STATE 2.STATE.POSITION. _,'.
STATE2.STATE.POSITION.STATUS.

;I

STATE2.STATE.ACCEL.TIMETAG,

STATE2.A'VrlTUDE.INFO$(I:),

and so forth. The components listed above arc called structure terminals. A structure termi-
nal is any component of a structure which itself is not a structure. Structure components
which are also structures are termed structure nodes: this terminololy stems from viewing a
structure as an inverted tree, as shown below:

AT?ITUOI[_INFO

," t (STATE _

o"

|

t

t

f' #" :i
,, *:.df _

I s- "...... =e,-_' *
__IV

'.r

• ,b

]9800045]2-]64

9.8 Structures

in thi._ diagram, rounded hoxe_ are used to represent nodes, of lurks m the tree. I'he
_luare buxe._represent structure terminals which are the leaves o1"the tree.

In Section 9.1 it was stated thai a component of a structure may heused in any context

in which a simple variable of the _me tyl_', carl _ used. This statement applies to both
structure terminals and to entire nodes of a structure. Since the nodes STATE2.STATE.PO-
SITION and*STATE2.STATE.ACCEL are of type SUPER VECTOR-STRUCTURE. they
may lie read. written, filed, assigned to each other, compared, or passed as r,aramgtet_ to a
procedure or function which expects a SUPER VECTOR-STRUCTURE ,0s an argument.
Thus. the_e components of STATE2.STATE mittht he manipulated as shown below:

n p:

F¢ STB'JC'TL_! SUPilIPVfCTgm:
I V VIC?_'I,

M X STITL_ _0OLt&H,
FI | ?if_iTA2SCALAr;
M SYeV¢_AI St_Ttvt¢:
M I I_lITIL _'L SUtrII_VITCTCm-SPIUCTUIII,
M | ViL_CXT/ S_[I.V|¢7_-STIUCTUm|,
H I ACCEL S_._Em.IECTOI'ST_CTU_I;

OICLA_| STATL ST&TIV|¢-STIUCTL_|i

H I StAT! StATiVIC-STIUCT_I[,
rl I ATTI?q.r'Jf.I_,O0AAPATIil VtCT0m 00UIIL|;

1¢ liPL _C| ?iS? DITA S_ "l";
FI _|CLII| CSCkl[ZtIT|_II_N_gALliil

O|¢lil| O|LTA T C_5T_qTl _ / |tJ| /*T|_ PlTk_,_¢ SA/IPLCSi#

t ' d

¢ AS24_TSg_AT 17 SILICAS ?_t C_IPICT AgCILII_FIITII

, . _gM CALL I_I&I_LTK_q.TLTKt.S_'ATK.A¢CKLTliSlgqRll',gATlt,$TITg._g ifTI;
II * *
H CALL THTI_IITfISTA?EI.2TATI.VILOCITTI iSSST_¢ISfATI_.STAT|.P_,SIT:CNPl

CTCLI • CICil * l;
fl P|LKITL_*T OATA. ¢TLLi) • STATI_._sATg; /l_Yl _ _T P_C|SS|_I.
N X_'I_PAT|.
n J_eCI0_ll Z_UT I ISSIS*, Ct_ li

0ITDLAlll _iP ViCT_-q_IUC_J| *
F¢ |tLL_&. O_TY,JT;
t
H _ _NI_/T.STATL_I I _ILS_ TN_N

DO;
|
H aUT_tT.STAn_ s PLtLSII
M IlYUIHi

J¢ g_TB_tT,TIHITLL • gNiUl.illliYllll

• ll OIt_lN_l.V I _UTPLOT.V* |iOlli.V I|LTi 11

CLOli iMilllliil 1• • lill_l Ii

, r

1980004512-165

++

ThtS_vcm_" Ttmp_tt 9.9

An dterrutte way of codj_J8the $2 tempbte used in decbrin8 STATE2 appem3 in _he ***
foUowin| fisure. This exmnl_Je;hound make the _ of level numben cJeu: level numbers
provide lhe caplbiUty of creltinl nodes in • templlte wilhoul rel'erenc|nllolher _emp]ltel. ++

chlnle wllaliM)¢veywould I_ r_')uil_l to the imrl_iou_ pl'OIl_L'n " this $2 I_'mpJatewas i_
subsliluted for the arUer formulation.

R pZ <
It IqlOOlJIlq; ,_

n sTir_icTUell_|IP.VliI:TOI l
lq I V qlCTOII,
R I STATUSIOOLIIlI,
ff 1 +ZJS(TUIICILAII
H S!IIlUCTI,r'+I IIII_
H I ST&TI+

R 31¥ ViCYal,
It 11STATUSIO01,1lNt
H) ?/IqTM SCb,I.IR,
Pl _ VgLCIC|TT,
N) V VICTOI,

4J II 3J IT/TI_J BOOL|dkli,
P8] TXMITJi JCaLJLI.
H I ICCIL _IPll V'IICTINI-$TIKICrUll.
R I ITTI_,IOIi.|I'_OARIIAVI]IYl[C?OtNLII
fl CLO'JIP+

II) referflnl back to the tree d_umm of the STAI'E2 structure, it can be _,cn lh,t the
level numbersrei_resentthe distances belween the top of Ihe structure and each componenL
Another Jllustnllion of thb ¢_ncc aPl_m below.

STRUCTUR_ X: Level X

2 B INTEGER, I
2(', --

3 D |NTFGER,
._ E INTEGEK,

! F IhrI'EGER;

•" _ In lhesc examples, lhe slructule lempbles lure been indenled Io show Ihe contcnls of

• # eKh node. This indentin8 is supplied by Ihe co_pik.J' based on the level num_n. Since IKe
II_L/S lanluate is written in f.,_ form_l, ll_ number of _lllllkl ¢o4_.doft lour¢l_ ¢llrds i-
ilveJev_tl. Hence, the pffvious example ¢ouM also be wfillen as:

STRIX_I'_RE X:! A, 2 B IN'_EGER. 2
C, 3 D _NTEGER, .1 E INTEGER. I F INTEGER;

i II__ oulput li_llnll would rtm_lI.

,,_* ,+ . '_+e+,,,+, + . _+++ +

1980004512-166

V- (O ,_Irtat'felr¢*

C_ding structure template_ m the above form ts not recommended, however. Properly in-
dented source code generally makes desk checking and subseeuent modification much
ea._ier

Exercises

t) 2A Write structure templates Ior the following trees.

X Y

/\ /I\
AI BI A2 B2 C2

.,\ /\ /\/
CI DI El 1"1 1)2 E2

where.

CI. Il are 3-_ectors;

n2, FI art, 3x3 matrices.

D2, F2 are arrays of length 5 of 3-vectors,

All other ternunals arc sc'dar

q.2B

a) For the folk, wing sequence of structure templates and the single declaration below,
draw the tree for the dr'dared structure TEST DATA

STRUCTURE X.

I A INTEGER.
I B,

2 V I _vI_CTOR.

2 V2 VECTOR;
STRUCTURE Y:

I_ I A,
2 B INTEGER,
2 VI VECTOR.

I C SCALAR;
STRUCTURE DATA:

I U
2 M X-STRUCTURE.

2 N Y-STRUCTURE.
I I.

2 J x-SrRUt'TURE,
2 K Y-STRUCTURE;

DECLARE TESTDATA DATA-STRUCTURE;

1980004512-167

)

t

The Strueture Template 9-11 -"

b) Write, in the natural sequence, the expressions used to reference each terminal of i .;

TEST _DATA. i _

c) Write an alternate structure template for DATA that allows the t_rminals to be ref-
erenced exactly as in part (b). but does not use structures X and Y.

d) Call the structure template of part (c) DATA_PRIME. and make the following
f declarations: -_

DECLARE ST'IUCI DATA-STRUCTURE,
STRUC2 DATAPRIME-STRUCTURE; ,,

Which of these assignments are legal: ! :_
t

I) STRUCI.L.M.A = STRUC2.L.M.A; I

2) STRUCI = STRUC2;
4

3) STRUCI.I.K = STRUC2.I.K: /

a 4) STRUCI.L.M = STRUC2.I.J:

5) STRUC2.L --- STRUC2.1: /::

9.2C Rewrite the following segment of HAL/S code, using structures to elimin,te the DO
FOR loop. How must the procedure PROCESS be changed to allow this? Be sure the

" data can be read in the same order as before. __
#

DECLARE VEC_ARR ARRAY(5) VECTOR;

DECLARE TIM_ARR ARRAY(5) SCALAK;
" DO FOR ! = 1 TO 5;

READ(5) VEC_ARRS(I:),TIM_ARR$1;
END;
CALL PROCESS(VEC_A RR,TIM_ARR);

9.2.1 Template Matching

Throughout this chapter, the d_ta type of a structure has been named by referring to the
template used in its declaration.The statement has been made that two structures areof the ._

• _ same data type if their templates are identical. For the purposeof matching data types, two
',. _ structure templates are identical if and only if the orderand datatypes of all of theircorn- i

ponents are exactly the same. For structure terminals, all of the attributes including preci.
_, sion and artayness must match. The term "components" used above also includes structure

nodes; two nodes ate of the same type if and only if their -omponents ire of the same data
. types and in the same order.

t

_', !

:

) .j :

1980004512-168

_12 Smuctuves

-" This rule can be stated in two different ways:

I) Two structure tc0nplates are idenhcal if and only ff the order, data typ,,.,,, and

hwmr('hwal arrangE'merit of their terminals ate the same.

_) Two structurv ten)phit¢.,, arc tdcntlcal it" the only difR'renccs bctwecn them are the
names of terminals at)d nodes.

Most of the infom)ahon about structures has already been presented. We have sect) how

to declare and refcrencc structures and their components, and how to code structtffc ten)-

plales, l'he u._. of strucl,res to group data for parameter passage, assignn)¢nt a_ a t'lock, and

Ihe sm)plification of I/0 statements has been illustrated. Subsequent seclions will add a few

more capabilities to structure declaration and referencing by building on the basic concepts

of ten)plates, nodes, terminals, and ,_'r-4el'ined data types presented here.

9.3 MULTI-COPIED STRUCTURES
|

Multi-copied structures provide a capability similar to arraysof simpler data-types. Tile
uses of structure c,piness are much the same as the uses of arrayness described it)Chapter
Six. 1;"several structuresare to be processed identically, it is convenient to reference then)
by number within a loop. An example of this usage is described below.

Fhe SLII'FR VI'f'TOR template from Sect=on q.I (repeated below) might be used toi

contain sensed velocity data frum an inertial measurement unit. Since these dcv=ccsarc
usually redundant, it is useful to define a mulle-copicd SUPER VF('TOR to conlain the

data. The following figure shows how such an ¢nhty can be declared aud refen.,nced.

M EXAMrLEN:
M PI:O3RMI;
M ST¢IJ_TL_E SUPEI__VECTOR:
M 1 v VECTOI_,
M I STATUS_r_OLEAFG
M t TZtt(rJ',_; SCALAR;
M DECLtP. _._L _UP[R_VECTOR-STRUCTURE(1) ;
M DECLACEE(ST ZNTEG[;_;

• II M DO FOR TETIPOgo_RYI : I TO 3;
; E

M CALL REAO_MUIZI ASSZGhlIVEL l;
$ Z;

M 11140;
E •
M CALL SELECT__'EST!{VEL) I ASSIGN!BEST! ;
E *

':': fl CALL GUIOANC([IVEL);
'_, S BEST;

Z •
M CALL OTHCRSH(V|L ! ;
S BEST;

#, :
_r

r.

\

.?

1980004512-169

Multi.CopiedStructureJ9-J3

H SELECT BEST:

M PI_OCEDL_E(V I ASSZGN(SELECTED I ;

M OECLAPE V SUPER VECTOR-STRUCTURE(31*

I1 SELECTED |HI"EGER;
M DECLARE tl ZNTEC.eR;
H DECLARE t!OST RE_'EP_TSCALAR ZNtTZALID) AUTOrL4TZC;
I1 DO FCR 14 = 1 TO 3;
E
I1 |F V.STATUS : OFF THEN
S N;

M REPEAT;

M ZF V.TTHETAG • HOST_RECEHI" TH_N

_. It DO;
H SELECTED : N;
/t M:)ST RECENT : V.T][HETAG ;
S N:

: /1 EKE);
H EN0;

11 IF M_ST PECENT : O THEM
& : H SELECTED : 1; /tALL EQUALLY BAOm/

I1 CLOSE SELECT_SEST ;
H GUYED-'t;CE :

! 11 PROCECURrIBEST_VEL) ;
/_ /1 DECLARE BEST VEL SUPER VECTOR-STRUCTURE;

C ,..

I1 CLOSE GUlrDAN_E;
II OTHER S_l:
tl FRCCEDL_I[{V I ;

'_ /1 DECLARE V SUPER VECTOR-STRUCTURE;

C ...

I1 CLOSE OTNER SN;
M READ_Zt_:

_ /1 PROCEDURE!UNZT.ffd_I) ASSZGN¢STRUt I ;II DECLARE b'f;ZT h'U/1 ZNTEGER,

. H $TRUC SUPER V C_OR-STRUCTUR[; !

_ I1 CLOSE READ_Z/1U;
1t CLOSE I[xAt_.;JLE_N;

i

' L, t

2- ' _i

_' _

.¢ _. i• i

1980004512-170

9-14 Structures

Several points are illustrated by this example. First, a multi-copied structure is created
simply by appending a copmess specifier to the structure declaration. The copiness specifier
is a parenthesized ,nteger which immediately follows the word STRUCTURE. As with
VECTOR or ARRAY dimensions, the number of copies may be specified by any arithmetic
expre_ion which can be computed at compile time*.

The next new construct in the example appears in the statement:

('ALL READ IMU(I) ASSIGN(VEL_(I:)),

This statement is intended to obtain the lth copy of [VEL] from an external device.
VEL$(I:) is a SUPER VECTOR-STRUCTURE with no copiness; the fact that it is con-
tained in a multi-copied structure does not by itself impose any restrictions on its use. The
semicolon in the subscript separates structure subscripts from the other types of subscripts
for the same reason that the colon is used to set off array from component subscripts. Struc-
ture subscripts may of course be combined with the other types: for instance, the second
component of V within the third copy of VEL can be referenced as VEL.V$(3;2). Some of
the many combinations are illustrated below. Given,

j STRUCTURE X:
I M ARRAY(IO) MATRIX,

I I ARRAY(3,2) INTEGER;
DECLARE BIG X-STRUCTURE(100):

the very first scalar component is:

BIG.M$(I:I:I,I)

and the last scalar is:

BIG.MS(100;10:3,3).

The first four integers are:

BIG.I$(l:l TO 2,*),

which is a two-by-two integer array.

.v" _ BIG.M$(I ;*: l,*)
• j

is an array of ten 3-vectors composed of the first rows of all the matrices in the first copy of
BIG.

There is also an equivalentto ARRAY() which will be describedlater.

_.o

r tr" :_'_,

i=

1980004512-171

MultvCopl,'d Structures _-15

Partttlons are also allowed in structure subscripts, the statement'

_ BIG$ (I rO 50,) = B1(;$(51 TO #:).

would set the first fifty COlUes of Bl(; to the values contained m the last fifty.

The data type of BIG$(I TO 50,) is "multi-copied X-structt, re °'. When the structure sub-

script is applied to a terminal (e.g. BIG.I L the result ns no longer a structure. In this case. tile

cop]heSS ts converted to arrayness. BIG.M$(I TO 50.) behaves like a 50 x IO array of matri-

ces. Likewise, BIG.IS(I TO 50;I .I) behaves like an ARRAY(50) INTEGER even though all

of the actual arrayness was subscripted away. With respect to terminals (but not nudes).

arrayness and copmess are interchangeable.

Returning to the original example in which VEL was declared as a three-copied

SUPERVECTOR structure, we can see how the conversion to arrayness is used. T,e fol-

lowing are arrayed statements which fimction exactly as described in Sechon 6.2.

[VFL STATUS] = ON; /*set all three status booleans to TRUE*/

MOST RF('ENT = MAXI[VEL.TIMETAGIb:

AVG Z COMPONENT = SUM(VEL.V$(*,3))/3:

AVG Y COMPONENT = SUM(VEL.V$(*;2))/3;

VEL.V = VECTOR(I,I.I),

In many ways, multi-copied structures are like arrays of other data t_pes. We have al

ready seen that subscripting is essentially the same except for the use of a semicolon instead

of a colon, and that terminals of multi-copied structures can participate in arrayed state-

ments. One copy of a multi-copied structure may be used in any context where a simple

variable of the same structure type can be used; this rule is also the same as stated previ-

ously for arrays and their elements [his section has also shown that the uses of copiness are

roughly the sam,: as the uses of ,_rrayness: identical operatioas on similar data, saving a set

of structures in a list, and maintaining tables.

Another way in which multi-copied structures resemble arrays is in initvflization. A

multi-copied structure can be initialized by hsting the initial values for each copy separated
by commas, as showa:

STRU('TU Rl-" MONTH:

J" _ I NAMEOV CHARACTER(5).

• _' I I)AYS INTEGER,

I ('OLD BOOLEAN;

DECLARE YEAR MONTIt-STRUCTURE(12) INITIAL('JAN', 31. TRUE, 'FEB',

28, TRUE, 'MARCH'. 31. TRUE, "APRIL', 30, FALSE, _);

_, Here, the asterisk (*) is u_d to indicate that only part of tile structure is to be initialized.

The initial values of copies five through twelve are indeterminate. Tile use of a multi-copied

_[structure for this type of diverse table instead of a set of parallel arrays (._hown below) is

largely a matter of style. The referencing of entries ns about equally convenient, but the

1980004512-172

9-16 Strt.'turrs

initial list groups all of the informalion about each entry in the case of a structure whereas
the information for arrays mpsl be grouped by type as shown in the alternative below"

4

: DECLARE NAMEOF ARRAY(12)CtlARACTI:R(5) INITIAL('JAN', "FEB',
_, 'MAR('H'. 'APRIL'. *):

DhCLARE DAYS ARRAY(12) INTEGER INITIAL(31, 28. 31, 30, *): '
DECLARE ('OLD ARRAY(I2) BOOLEAN CONSTANT(TRUE, TRUE, TRUE,

PAUSE, *):

Finally. procedures may be written to accept a structurt with a variable number of
copies. The syntax is the same as for arrays, as shown below, which is a re-work of the
example before.

/I FXA._.PLE N:

H $TPUCTL_E SUPER_VECT_ : ;
• /1 ! V VECIO?,

h I STATUS [O_LIINq
11 I TI;"E]'AG SCAL'P;

I't DE'..LAO[V[L _uvr.p_VECTO_-$TRUCTURE(3) ; _.
H DECL_,gE BEST ztnE._[;;
M DO FCR TE/1rOP"RY I : 1 TO 3;
E ,,,

1t CALL R/AO]_J(Z) AgSIGN(VEL I;

rl EHO;
E *

[I CALL SELECT BEST({V,T.L}) aSSZGNI_EST);

It CALL C_JIDAP,'CE|V_ L);
$ BEST;

E ','

/1 CALL OTHEg .qkl(VEL);
S BEST;

n SELECT_E_EST:
t'I LeROCEUL_EI V) AgSZGqf _FLECTED I ;
h DECLARE v SUPER_VE"TO;_-STRUCTL_tr(e I ;
/1 D[CLAR£ SELEC1ED ZNTEG£R; c
E •

• If /1 OO FCR TEt_eePARY tl : I TO SZZE((V||;
•1 E

e d" 11 ZF V,$TATUS : OFF THl:lt

Iq IPEPEAT;

C ...

/1 ENO;
/1 CLCS_ SELECT_BEST;

•" N GU][D'HCE :

N PPOCECL'PE(BEST_Vlr L I ;
N DECLARE BEST_VEL SUPER VECTOm-$TRUCTUW|;

.t"

J

\

• , V¢ '

1980004512-173

I/ldl_ (opWd ._fru(ture_ ti I "

L' C ...

M CLOSE GUIgAt_CE ; (

M g_ectev_tt Vt; i:
M 01_Cklc[V SU;tP.VECIO_-STPUCt'_[;

C ...

M CLC_F OTNFP SW;
M REaD_I:IU:

M ;'Ro:.rt'L'_t{C"_It__?1) t-_S I":.:;t $TRU_ I ;
M D_CLt_E L":IT HUH IN;tGFR,
O S_ _u'C SUF[I_ _.Ec TOP-SIpUCTL'R[;

C ...

M CLOSE P_ J,O_IT" ;

M CLOSE E_'_ L[N; ,{

g

Note, howe_,er, that there arc a few wa_ s m which multi-copied strtlctttres arc dit't'ercnt

from a_ays.

I) Only one dtmenmon of structure ¢opnle_s is allowed.

21 Arrav,, may he umd as structure COlllponents, but Intflthcol_Jed structure., nlay tier

3) there are no operato_ or built-hi functio.s for processing ,_tructu_'s,

Exerci_s

O.3A Rewrite tile sohitIOll Io,l pt'oblelll U.2t' tlMng Illtiitl*c:Ol_led struCttlre,,

O.3B ('onsuler tile following _;,IrucIIIIX" tellll_hlte and declaratJoll

SFRUI'I'URF AI

I B ARRAYtS_ INT|:G|.R.

I C S('A[.AR.

_" t* I D VI:CI'ORthL

• • DFCLARF A AI-STRUt'ruRI.|IO0_:

Write a tlAL/S expression to reE'_'nce tile I_lIowlllg data rictus, and indicate their type atkl

array ne_s/copine_s.

a) l'he 25th copy of A,

-_ h) The3hi COIlll'_Olletlt Of B trent allcopies of A,

C) (" froltl the IOth through 20th copies of A.

d) |) t'nml 75tit to 85th copies of A.

e_ Tire Isl element of D t'n.mt tile t'i_t copy of A.

:.¢"

r _

J

,,a

]9800045]2-]74

_-18 SlrUt'lUres

cL3C The following reformation about a company's I00 employees is available:

a) SS number (integer)

b) salary (scalar)

c) job code (integer)

d) name (character)

Write a HAL/S program to read in all the data from channel 5 and compute the average
salary. Create a structure to hold all of the available information.

9.4 DENSE, RIGID, AND "UNQUALIFIED"

j DENSE and RIGID are minor attributes that can be applied to structures and their
nodes to give the user more control over the layout of structure data in storage. The term ','
"unqualified" refers to a type of structure in which it is not necessary to qualify each refer-
ence to a terminal by the name of the containing structure. These features may not be fre-

quently used. but they do provide additional capabilities required by some applications.

9.4.1 The DENSE Attribute

The DENSE attribute instructs the compiler to pack portions'of a structure into as little
storage as possible, generally at the expense of efficient references to the data. The DENSE
attribute is specified on a structure template or a node of a template as shown in the figure
below:

tt P:

n PROGRAM;
• II H STRUCTUI!O| FLAGS OENSE:

II I B1 BOOLEAN,
H I B_ BOOLEAN,
H I HO_E ItlTEGEIII,
n I B3 BCOLEAH.
_1 I C CHAPACTEm($);

I1 OECLAPE STATUS FLAGS-STRUC;TURE ZHIT][ALIOFF, OFF, O, OFF, '');
H CLOSE P;

_.,

r

¢

it,

1980004512-175

I)ENSI'. RIt;ID, and "'UnquahJlcd'" ¢-19

the effect of the I)I:NSE attrnbute i_ implementation dependent, l'hns ts because the
mdpping of HAL/S data types into bits, bytes, words, double words, etc.. vanes according to

the ,,forage formats of individual target machines Most computers have operand ahgnment
requirements, for instance requiring that Iloatmg point numbers be stored at an addres,,
wluch i_ a multiple ot two or four. The IIAL/S programmer is normally i_flated fror.i the,,e
con,,idcrations. Since var,able_ are only referenced by their sy:llbohc names, the compder i,, _.
free to re-arrange declared data to lllee| the requirement.,, of the nlachJn¢.

Unless the DFNS}. :lttnbute is specified. ,ill dat:l Is ALIGNFD (Le. placed on appropriate

storage boundane'O. DI.NSE data is packed whenever there is a re•sol,ably efficient means
of bypassing the computer's operand aligmnent requirements. Thus, the only _eneral state-

ment that can be made about I)FNSt' ,,truclures is that they tend to require less storage but
more time to accegs than ALIGNED structures,

It turns out, though, that most compilers wdl pack booleans and bit strings in DENSE
structures. In the example above, BI. B2 and B3 would occupy tile same amount of storage

• that would be allocated to a single ALIGNED boolean. Note that B3 is placed in the same
byte, word or other address•hie unit as BI and B2 even though an integer is between them
in the template. Whether or not DENSE is specified, the compiler is free to rearrange the
order of structure components to minimize the number of alignment gaps or to optimize

the addressing of certain components. In fact, all declared data is subject to the rearrange-
ment unless the RIGID attribute is specified (see Section 9.4.2). L,

Components of a I)ENSF structure are referenced in tile usual way; some additional re-
st_.ctzons on their ug. apply, but where they are allowed, they Ixhave exactly like compo-
nents of a corresponding ALIGNFD structure. Thus, statements like

STATUS.BI = ON;
STATUS.B2. _ ;'ATUS.B3 = FALSE:
IF STATUS.BI AND STATUS.B2 THEN STATUS.MODE = 9:

work as described previously. The additional restrictwns* intposed on terminals of dense
structures are,

I) Bit or boolean ternlinals of a dense structure may not be i,as,.v,_das ASSIGN param-

a" _ ::ters to procedures.

• • 2) Btt or boolean terminals of dense st_.uctures may not be used on the left hand side of
a FILE statement.

:') Bit or boolean terminals of dense structures may not be used in NAME expressions.

s_ See Chapter 13.

*'rhcs¢ tcstrtc|_ns avoid the need to pareboth an add[eB and st•fling bit number to Libraryor USER-
suppliedroutines.

=iF"

dr. $

1980004512-176

9-20 Structures

Thesea_ [he only restrictionsimposedon the DENSE attribute;note that theyapply
only ,, bit andbooleantypesanddo not apply to entire structureswiththe ,_JI:.NSEattri-
butee"en if thesestructurescontainbit orbooleanterminals.Thus,

: ISTATUSI = FILE(!,I);

i4 legal,but

STATUS.BI = FILE(I,I).

i_not legal. -_.

9.4.2 The RIGIDAttribute

Consider the following structure:

a STRUCTURE INTEGER_LIST:
I SI INTEGER,
I DI INTEGER DOUBLE,
I $2 INTEGER,
I D2 INTEGER DOUBLE; ='

DE£tARE IOTA INTEGER LIST-STRUCTURE;

On a computer which requires that double precision integers be stored on even ad- _
dresses, the compiler would probably rearrangethe data as follows:

word: 0 DI
I

2 D23 _m

4 s__j_
5 S2

If the datawas kept in the naturalsequence, the following would be needed: _,

• • _ word: 0 SI
I 71111111

2 DI
3
4 52

/lllllll5

6 D2

The shaded areas indicate alignment gaps which are effectively wasted storage. These dta-
ipramsshow how allowing the compiler to re4mnge data can result in a substantialsavings

• of memory.

Bi

, -,Z i
!

.lb
?

]9800045]2-]77

DENSe,. RI(;ID. and "Unquahflrd'" 9.21

OccasJnnally. however, it is necessary to prevent this rearrangement, generally to inter-

face with external devices or NONHAL r, utines. The RIGID attribute iS supplied for this
purpose. The second diagram shows the storal_ assilinments that would be made if the

word RIGID appeared immediately before the colon of the STRUCTURE statement. An

-_ appropriate use of the RIGID atmbute appear_ below:

STRUCTURE IMU_DATA RIGID:

I DELTA V ARRAY(3) INTEGER DOUBLE,
I ATTITUDE ARRAYI3) INTEGER,

I TIME BIT(32).

I STAT DENSE.

2 FI BOOLEAN.

2 F2 BOOLEAN,

2 F3 BOOLEAN.

2 UNUSED BIT(13).

I OP MODE INTEGER;

DECLARE IMU_DATA IMU-DATA-STRUCTURE;

CALL ASM TO ROUIINE ASSIGN(IMU DATA);

a In addition to the syntax for declaring a RIGID structure, this example shows the
DENSE attribute applied to the STAT node. IMU DATA.STAT is both RIGID and

DENSE. The R'G'D attribute on the structure is inherited by all of its nodes. If any addi-

tional nodes were defined below STAT, they would also be RIGID and DENSE. unless the

ALIGNED keyword was specified. The RIGID attribute is always inherited (cannot be

turned off) since there is no "non rigid" keyword.

f;te RIGID attribute allows any data layout to be mapped into HAL/S data ty.ncs. It

does not impose any restrictions on the use of a structure or its components, llowcver, two

structures cannot be of the same data type unlc:'.s neither or both are PIGID (i.e. the

templates won't match).

9.4.3 Umlultfied Strucmrel

in the example above, note that "IMU_DATA" is the name of the template and the

name of the declared structure. This fact makes IMU DATA an unqualified structure.

W.hcn a structure template it to be used in on/y one declaration, it it convenient to live

the structure the ume name es the template. This permits the name of the structure to be

omitted when referencing its nodes and terminab. Alton referdn| to the structure above,

J the statement,
.f4

DO CASE IMU_DATADP MODE;

_: it lepl, but the more convenient form,

:_ DO CASE OP_MODE;

{ is,dwpermitted.

*_,m •

• It,

1980004512-178

9-22 atru¢t,.te_

Unqmdif'_,d structures diff.-r from qualified stru_ures (all prevk_s examples) on/)' in
the form of referencesto their components. It has alntedy been staled that there is no exe-
cution-time penalty involved in usinll a structure tennlmd instead ofa _imple vm'iable;ifL, t
unqualified structure is used., o distinction has to be made in the source code either. Thus.
there is no disadvantale to usinl; a rigid unqualified structure to force _ ¢(_lJectionof vari-
ables to he allocated in a particular _quence, except for i_ssible ali$nment pl_.

Sometimes it js useful goconvert a setof declared variables to the components of an un-
quahfi_d slruclure, since all of the variablesInow structure terminals) can he transferred to
or from a random-accessdevice in a sinsle FILE statement. Var;aMes are also sometimescol.
lected in an unqualified structure for documentation purposes since thi* allows them to be
discux,,edasa I_roup under an "official" name which appears in the suorce code,

Now that structures and the_ u.seshave _ [ui_ _esCll_bd, Only two data typ_s re-
main. Bit strinlLI, which are the I_neral ea_ of bool¢_l, ire dJac_lled bl Chapter 1.1,
event variables, which may be thousht ofu "read-time booleam", in Chapter 12. lh¢ mate-
riJl covered thus far in the text should allow most applications to be coded in HAL/S; the
handhnl_of etrl_r_and exceptional conditions will be diJcussedin the next chapter. Then we

a will proceed to put a collection of prolPrams tOlPetherand execute them as an intelffated sys-
tem in Chapte_ I I and 12. Chapter 12 describes how the user may control execution rates
and inter-process¢ommunicati(Jn and synchronization, The book concludes by discussing
severalconstructs that are p.'ovided for writin| "syslem programs'"suchas I/0 device drivers
and memory manasemer,t routines.

P
4 J

!

DLNSE. RIGID. _nd "Unqe,_ltfled'" _'23

F_e_.Im

, 9.4A (;i_,r

STRUCTURE A RIGID"
I B, I

2 C INTEGER,
2 D VECTOR,

I E.
2F,

3 G MATRIX(4.5),
3 H ARRAY(2,3) INTEGER DOUBLE,

2 I INTEGER:

STRUCTURE AF:
j I G MATRIX(4.5),

I H ARRAY(2,3) INTEGER DOUBLE:

STRUCTURE RAY RIGID:
I G MATRIXI4,5),
I H ARRAY(._.3) INTEGER DOUBLE;

DECLARE X &.STRUCTURE,
Y AI= STRUCTURE.
Z RAY. STRUCTURE;

DECLARE INTARR ARRAY(2.3) INTEGER DOUBLE,

Are lhz followinllassi|nmcnls_"pI?

a) X.E.F = Y;

b) Z • X.E.F;

c) X.EF.H • Y.H+Z.H;

d) Y,G • Z.G;
J

• 4 e) X.R.C • Y.HS(I.I);

9.4B ComdderIhc followin|$1N¢lufelemplal¢aM de_l_liofl:

STRUCTURE A:
I B SCALAR,
I C INTEGER,
I D VECTOR(6);

DECLARE A A.STRUCTURE(20).

.¢"

i

;L

mN

]9800045]2-]80

9.24 Slructurer

What do tl,e following HAL/S subscripted variables reference, and what are their types and
arrayness/copme_

a) A_t20,)

h) ASq2 AT 103

,:) ('S(I:)

d) 1)S(4 TO _:)

e) DSI*. 4 TO _)

End of Chaplet Problems

9A What are some of 'he cat,abilities that HAL _Sstructures give the program that would
otherwise he unavadahle?

9B Wri:e a IIAL/S program that will tea _ sh.mlated data from 3 redundant sensor,_on

channel 5 and compute the middle value of tile _ redt,ndant pieces of data.

Read an acceleration, velocity, attitude (J-vectors). and a scalar time tag alter each
from each measurement unit. First read from unit I, then 2 and 3 in that order.

Compute the middle value of the three measqred values for each quantity (using the
ABVAL built-in function to compare magnitudes of the vectors), and store these

values with their associated tut+e-tags in a structure with the follov, ing template:

I BI_ST +At'CFL.
2 ACCEL VECTOR.

2 AC{.'F,L JIM SCALAR,
I BEST _vEL,

2 VEL VECfOR,

2 VEL TIM SCALAR,
I BF.ST ATTITUt)E

2 PITCH VECTOR,f
2 PITr'II TIM SCALAR,

t,
,, f

1980004512-181

" I0.0 FRROR KI'L'OVI.RY

; }"adt mlpIcnzl'nt,iholz z_l"the' IIAI/S I,ml:u_i_cd_tt.zc.__l ,,d _t ,mHlim' l'rh_ Ih_',,c
rrot, Ol <_ ¢'I)IIPH_, llIChlt|¢

I _1 zn_,did _lrl_Litlp,'i,,tzto |_ll|lt-ilz tblzdlolz,%_uch _|s,_t_RI (I _,

,_] h_ltxl_,;|t'¢ dctcdcd crfo_, _tlL'|l _,l,_',ttt¢ltIptllZ_ to dl_ Id¢ I_,_ _,¢r_:

4) ;|ILL| t_th_,'l _'tllldltiOlt.% whtvh m_ ¢lrt.,t" _,hll¢ CX¢¢IIIIIIV. CZ'IIJIII ||A[_ .'.l;tl¢lll_'ltl.%

t'._, Invz'rtlll}t d ..,lltl_uldr tll.'ltrt_, and L1',1111_._.llV_,lh_| ¢|tardctt'l .,,tt|_s_'tl|_l._,

B,'." drf_ttllt, whqll ,Zllt _ o|' t11¢._,cctt'or_ oz'<lll._, "1 ._tdtlddYd t;_l,l_ i._ |',¢l|'t_rlllCd, L_tt _,ftlltttd-

ha,_,| ._y'_t¢lltS0 EliTEct,of 111c._].q_, 1113V be l_It_[dlcd _Is wE'll, In ._,_111_"_'dxcs. tile ._|dlt_|{trt| |'iXLI|_

is to print dtalznt_tl_"ttt|'_._rttt'.l|lon _lltd tt°rtllzllilt¢ th_ |_ro_r_ltt, bil| (l_uidI,_ ._t_lttt" Ittltt_'tlotiA

¥:lhir IS Xtli_$tltti|rt||'ort|tq t1|'_'t,ni,|il1_t'_,l_l_',_,_lmldlttit_,Ctti|lOl}L'OI||IItLi_ _I(111,_|i11}_'{',i_"

$gRT(,_) is mvokrt| with a ncpa|ivc ._. tilt- st{lltt|_lrtl I_Stll_ i_ to I_'ttlrll 5LlI,, I(At|5(,_Ii Ih_'

I (_tlltl_.

|'|1c ,%|:lll_lJft[l'l_tip iI1_|) I_Ol be _ll_plOi_rt,'ll¢ t't_l _lii :|pl'llt¢_iltOll._, I|t'lt{¢, I1:%1 S I_td_',_

_1 IIIt%'l|dlli_ltl Ih:l| ;dlow', u_d'-_,_upl_hcd IIAI ,',_ ._ld|¢lll¢ll|,_ |O I_;Itll _'_q)lml _vht'll _|11 qtiot

H TI_T X

11 lt'J'UT, OUTFUE, tXPECTED_
H DECLARE |NTt_[R]NII|AL_OI.

Pl _1 t R_'C_R

H _.0 TO pr,'_r

t! PO k_,_ttt trUE;
|1 I_[xOtSI _I,PUT, I[_(P[(_T[Ol
;1 CAt L Xt _[t:PUT) A$_IG?I(C_UTI'UTI i
H IF _*_JTPUT _ IXPLCtIt_ THE14
14 fl_,GItT • R|Gt'T * l;

• it N ELSE
H _RO_G • k%'O?,_ * I|

M DO_E :

tt k_[ll't6) 'RISdLT$ OP TESTth'_ X' ;
H k_IT|(61 RIGHT ' S_.MPLf5 CC'i_R|CI* ', k"_ONC_, ' $._,NPLE5 IN,'O_RrCT';
N Xz
;4 P_O(:Ek_t_Z(| I A$$|GNi O _._
H DECLARE ,_,C_,LAR,
N I_ O;

• C
C

H CLO$1_ l|gt X|

i

]9800045]2-]82

I()-_" I'rror ._(,('o;,¢rv

()n]_ olK" IIL'W ,:onslrUct I,_U_ed il1 Ihlb L-x.:llllple:

ON FRROR$ 00:5) (;O TO I)ONF:

fins is an ('_ccul,Jhlc M;.llvln¢lz! which estabh_hcs "'(;O I'(-) DONF.'" as a handler for the end

of filL" error. WhL.I1 Ih¢ ON FRROR ,,_l:llemenl is executed, the defaull error]:andhzzg O.e.

standard fixup) for the enid of tile error IS rephlced hy the" GO TO stalelnel:t supphcd. The

l'unclmn of the ()N FRROR stah'ment is Io se]ecllw.'ly _'plac¢ the sl:mdanl error h,mdh:rs

tluderprogram conlrol.

I0.IrHF ON FRKOR STATEMENT

Like the IF ,_latt.mvnt. ON FRROR is a compolind statement (i.u. a stalemcnl which

coutalu$ altofhvr slatelllcnl). It spe¢11]es an d(,11011|0 be perfornled when an error o_.'L'lU'_,

Fins action may b_."an executable stalemelzl, hut GO TO is the most comz:mnly used in this

¢ollle_.|. I,1 f:1cl, _IIL" acllorl Portion of :,'" ')N FRROR slaleln,.'nl _ould b_" lhe most fie-

,.|Ul..lll tlSf,"Of (;O 1"O HAl/S, The exaluple above, however, can be re-wriltcn wilhoul a

II (;0 TO. as in lhls I'igtlre

H TEST_X:
I'1 PRO:;_tl;
It R[,f'LJCE TO BY "10";
11 CECLA_ INTEGER Zt:]T]_AL(01,
H R'_GHT_ _01_5;
C
C
C
M ON ERR0_
S I0:5

fl DO;
M I_ITE(6) 'TEST I_ESULT5FOLLON';

H ._R]TEtb) RZ_HT, _ROHG;
H RETUqN;
M D_;
M DO t,'HZLETRUe.;
C

" ! C
• C
* I M Eb'D;

M CLOgE;

.i

• II1 tins example, a IN.).. I:.NI) group serves as the act;on of the ON I_RR(.)R statement,

Notc _ha: in making this change it was nece_q,' to add a RFTURN statement after the

WklTI. slatenlents. This is because aJh'r t/It' dt'tiOtt _q'dlt ON ERROR ._tatement h_,_ be'i'll

('xecuted. o)ntn)l falls through 1¢) the]'edit)wing stdt¢tnt'nt. If Iht' RFTURN wel_ 11oi coded,

the IX) WIIILF "I'RUI_ loop would he re-t, xeculed after the WRIT_ statements and the

eltor probably would recur, resultint_ in an mfinit'." loop. i'he next figure illust:,_tes 'he flow

of _'ontrol around an ON ERROR DO ., END group.
_'o¢"

,-'

k

1980004512-183

The ON ERROR Statement 10.3

A=I;

1980004512-184

_ 10-4 brror Rec.rerv

After an error occurs and a u._r-specified action is taken, there is no way to resume

execution at the po,nt that the error was detected For efficiency rea._ons, the state of the
progrJnl Immediately after the error is not saved, and hence cannot be restored.

The end of file example illustrates one dtfl_rence betv een the ilAL/S ON ERROR sys- :"-

tern and the system of alternate returns or "'END=.., " used in re;my language, The ON
|'RROR SlAtelnent was coded outside of the DO WHILE loop: thus the overhead a._,Soclated

w_tt_ defining an end of file handier is paid only once, rather than at each READ statement.

The subscript in the ON L'RROR statement consists of two numbers separated by a
colon The left number is an error gr(mp: the right number is an error ('ode within that

z
group, Denotin... trots by both a group and a code allows enhre groups of errors to be _,
haml!ed identi ally [see lav..rl]'he group and code assignments of a particular error ar_'gen-
eralb the same among various mlplementations of" the languat, e, though this is not guaran-

a teed by the ItAL/S Langnage Specification, The User's t4anual which corresponds to the
compiler in use should be consulted before using ON ERROR statements•

The compiler used m producing the listings for this book follo_,s the same convention as
several }tAL/S compders: all i/O error are assigned to group I0, and codes 0-9 in this
group represent end of file erron on channels 0-q. Thus, ON ERRORS (10_5) sets up a
handler fi_r end of file on channel five. Use of the macro:

i

REPLACE I0 BY "10":

is used to improve readabihty.

If a program reads data from several devices, an end of file handler can be created Ibr
each. e.g.

ON ERRORS (10:4) GO TO NO_MORECARDS;

ON ERRORS (IO:5) GO TO END OF TAPE; _,
etc.

j" _ It may be more convenient to write one handler for any i/0 error, this can be easily done

• • by omitting the error code as in"

ON ERRORS 00:) GO TO DONE:

' ON ERRORS (10) GO TO DONE: ":

These forms both _pecify "any error code with the given group". Finally. the statement:

ON ERROR GO TO DONE:

sets up "GO TO DONE:" as the handler for all errors (including end of file).

, r

1980004512-185

The ON ERROR Statement 10-5

I1 P:
M _OGRAM:
M DECLARE n HATRD_' ._

¢ _,
C
C
M ON _'RROR
S 4:_7

M DO;

EN -"Ol
M GO TO L1;
M Et,'O;

M z

M L1 :

E ;;M k'_XTE(6)
C
C
C
M CLOSE P;

ON ERROR is the standard means of handlingexceptions which arise from operations
on invaliddata. For example, a runtime enor will result from attempting to invert a singular
matrix. Tlnestandard fixup for this error is to print a message, return the identity matrix.
and continue execution. In the program segment above an ON ERROR statement is used
to substitute a zero for the identity matrix.

It should be noted that use of this form of the ON ERROR statement rvplac,'s the
standard fixup. Hence it prevents the generation of an error messa_. Many implementations
impose a limit on the number of errors that ma_,'occur before the program is terminated by
the system: When a user-supplied handler is invoked, the error is not counted toward this
limit.

Once anON ERROR statement is executed, the specified error hanJler remains in effect
until it is deactivated. One means of deactivating an error handler is shown below:

. a Q

• 4'

M P*
n PROGRAM;
n DECLARE M MATRIX,

M Z XHTEGER|
n DO F_ X • I TO 101
C
C •

"" C

-Pm_•

S,-'

,, r l_

r,

1980004512-186

I(16 _rror _¢'ztJlt'rl

f
:._ rl ON LV_tL'_

$ t¢:_7

M DO:
E w
M M = 0:
M (;9 TO Ll;
M Et_J;
E _' *-1

M MI: M ;
E
M LI: i._ITE(b! M;
C
C
C
M Et,*O_
M CN LR'_OP SYSTEM;
S t*:_7

C

C
C

$ M CLO_E t';

Ilere, the keyword SYSTEM ts used ,n place of an executable statement as the action of the
ON ERROR.]'his slatenlent has :l'., etft, ct nf restoring th._ standard fixup for FRROR$
(4-27} To see why this statement ts needed, suppose that additional reverse operations were

coded later ill the p"ogram, and this statement was omitted. |f one of these operations
tallied 311 error, control woultl I'te transferred to the user handler ill lhc ttllddh" of a loop.

Tilts would be disastrous, since tile compiler assumes that a loop can only be ententd by

excc_'4ion of the DO... statement :it its head. thus, /.l dR ¢'rror handh'r Is c,dcd J:l a IoolP,

tt should d/war._ hc dc,.ctn'ah'd at ceil .from /hi' loop. In general, it is gotM practice to de-
activate error hand[el_ as soon as they are no longer needed.

The st:denlent;

ON ERRORS iX:Y) SYSTEM:

•
a restores tile default (system) recover)' :,¢tion ibr error X:Y (group X, ctxle _). in addition
* • to SYSTEM and an executable statement I(;NORI: can be used ;is the :lotion of an ON

ERROR statement, :is m:

. ON FRROR$ (4:._7) IGNORE,

i This statement infontts the error recovery system that inverting a singular matrix is not to
be considered ;m error; i.e. tliat the standard fixup (returning identit.v) is appropriate aud

'"_ that execution should co, tinue without all error message or other notification. Depending
on the compiler in use. IGNORE may not he pemiitted for certain errors.

.t"

-to ,

it

'7.

1980004512-187

%

; The ONERROR Statement 10 .7

When an ON ERROR statement is executed, an error recovery action is established for "

an error or group of errors. Three recovery actions are possible:

l) an executable statement to recewe control. (in lieu of the standard fixap and an *;

r: ; error message): _'

: 2) SYSTEM, which is the initial state and includes both the standard fixup and an error
" message: and '

3) IGNORE, which requests the standard fixup without an error message.

Any number of recovery actions may be in effect at one time. In a sense, the actions are
cumulative. If the code below were executed, four recovery actions would be in effect.

M P: :;
M PR_RAM;
M D[CLaRE SCALIP,
M A. B* C;
M DECLARE XNT[OER,

_1 M X, Y, Z;

M ON E_CR

M DO; _

M I_RITE(61 A, e* C* X, Y, Z; !
M RETLvN;
M Et.'O;
M OH ERROR
S 10:5

M P[TL'RPl;

S lO:

M ON [RROIt SYSTEM;
S q:E *"

C
C
C

: ri LaST CARD :
I'I CLOSE P;

The net effect of these statements is: Any end of file error, except on channel five. will

• $ be ignored, and any other error, except 4:2, will cause the WRITE and RETURN statements
• to be executed, if error 4:2 occurs, the system action will be taken, and when 10:5 occurs,

/
• P will close. This shows that the handler for error $ ',10:5) takes precedence over the

handler for error $ (10:). The general rule that applies is: When the error spec_/ieations in

s_verdl a(tire ON ERROR statements in a single block apply It_ a particular error, the most
specJ)lc takes precedence. Thus. as each of the last three ON ERROR statements in P is

. executed, the number of errorJ handled by the tint and most general one is reduced.

Note that the rule above applies only to ON ERROR statements in a single block
(program, procedure, function, etc.). The effect of ON ERROR statements in nested blocks
will be discussed in the next section. Note also that an ON ERROR stateraent has no effect

:. until it is executed.

e
;

:#"

"2. '*

1980004512-188

1_8 Error Recovery

' Exercises

10. IA Where does the flow of control go after the action of•n ON ERROR st•tement has
been executed?

IO.IB Why is it good programming pracUce to deactivate any error handler that is coded

inside a loop when that loop is exited?

IO. IC What are the tht_e possible recovery actions in the event of a runUme error?

IO. ID Write the precedence relations for the 3 wneral forms of subscripting for the ON

ERROR statement when they occur in the same code block.

10.2 DEACTIVATINGERRORHANDLERS

Anerrorhandlercanbedeactivatedin threeway::

I) by owrridingit with• newI,,.,dler,

2) by exiting from the containing block,

3) by using the OFF EkROR statement.

All of these methods are affected by the HAL/S block structure, A procedure or/hnc'ti, n

('annol make any permanent ('hattge to the em)r environment of its ozller. This _tatement is

a co•sequence of several rules which will be described with reference to the figure below.

|l i

"l A"

H PltOCdlA_;
I1 ON ERI_OR ZC.d_E;
S I:E

HM CALL litCALL C;

° _ F S:PROCEOUR[;

H ON Ewg_
S I:Z

H GOTO X;
H CALL C|

!_ Xl k_lTEit) *ilOT AN [llmOil*;CLOSE8;

_ CLOSE ¢1"" CLOSEA;

r t." ",'."

._ _'_
¢

1980004512-189

J o

D_cttvatznl _ "_rHandlers 10-9 _._

None of the statements shown can produce an error; however we will discuss what
_ would happen if ERRORS (I :2) were caused by an additional statement inserted at various _:

points

It th, ez or occurs in block A proper (i.e. outside of B and C), the IGNORE action will
be take,i, e' en after B is called and returns. This is because any error handler defined in a
block is c,Jncelled when thai block RETURNs or executes its ('LOSE statement. When B
returns, tae error environment reverts to that in effect when B was called. In this case, the
IGNORE action is re-instated. _*

When the ON ERROR statement in B is executed, the IGNORE acts,:d is temporarily
overridden by the GO TO action. This action then remains in effect until B returns. If the *
error oc:urs in B. but before the GO TO action is set up, the IGNORE action is taken. --
Merely invoking a block does not change the error environment. When B calls C, the GO TO
action is still in force: if ERRORS (i:2) occurs in block C. control will be passed to the
label X in block B. In effect, C returns to X instead of to the point of invocation. When this

a happens, the error environment is restored to that which prevailed before C was called, just
as ifC had returned normally.

in the example, block C is also called directly from block A. In this case, of course, the
ON ERROR statement in B has no effect: if the error occurs in C when it has been called
from A, the IGNORE action is taken. Thus, we see that the range over which an ON
ERROR statement is active is not determined by the static block structure, but by the
actual sequence of CALLs and RETURNs.

The left-hand diag,'am below shows the static block structure of a program A. which
is suitable for describinig the scoping ruin for variables.

A i

• f

I I

Block Structure Call Tree

"outer" variable can be "upper" [,locks affect error
referenced, environment.

i"

]9800045]2-]90

.!

I0-10 Error Recovery

The right-hand diagram iilustra:es the range of ON ERROR statements within A. B and C. C
occurs twice in the diagram, at the ends of different limbs. Since all intervening blocks
between a given block and the top of the tree may be scanned for handlers when an error
occurs, a block's error environment depends not only on local ON ERROR statements, but

those in the calling block, and in the caller's caller, and so forth. Block C may be affected by
B's error envwonment even though it cannot access B's variables.

Now that the basic concepts have been illustrated, the rules for deactivation of error
handlers can be stated precisely:

I) When a code block exits (by RETURN. CLOSE. or due to an error) the error envi-
ronment J_restored to that in effect when the block was entered.

2) An error handler may be replaced by execution of an identically subscriptea ON
ERROR statement in the same block.

3) An error handler may be temporarily overridden by creating another handler in a

a "'lesser" block ti.e. lower in the call tree) which applies to the same error(s).

4) An error handler may _,e completely erased by execution of an identically sub.
scripted OFF ERROR statement in tht' same bloc/_.

These are the only ways that an _rror handler may be deactivated. Note that there is no
limit to how far up the call tree the system will search for a handler when an error occurs.
As stated previously, when a particular block contains several handiers that could apply to
the same error, the must specific is selected. Other active blocks are searched only if no
handler at all for this error is found in the current block.

The OFF ERROR statement may be used to cwcel the error handler created by a cor-
responding ON ERROR statement. There are only four possible forms:

OFF ERROR;

, OFF ERRORS (hi:n2);
OFF ERRORS (hi:)',
OFF ERRORSnl ;

and of the_, the last two are equivalent. The effect is -imply to cancel an identically sub-

a" _ scripted ON ERROR statement in the tame block. If no such ON ERROR statement has
been executed, the OFF ERROR statement has no effect.

• i

The primary use of the OFF ERROR statement is to re-instate an error handler in the
calling block which had been overridden by a local ON ERROR statement. An example of

this usage appean in the following figure.

f

,It"

I
, r

";, t

0

1980004512-191

1

Deactavatmx I_rror llaodh'rJ IO.I I

• _ Lt

n F'ROSRAM;
C
C
C
n ON I[RRCR
M GOTOx;
h CALL8;
M B:
II PROCEOURf ;

-f C
C
¢
. Oil I[PROIe ZGNOO[;
¢
c
c
n OFFEPROR;
c
¢
c
M CLOSEB;

$ tl
¢
C
C
tl CLOSE;I;

It should be noted that the handler cancelled by an OFF ERROR statement must not
only be in the same blocK, but it mu.t describe exactly the tame efforts). For instance, the

_quence:

ON ERRORSI IGNORE:
ON ERRORS2 IGNORE:
OFF ERROR:

w,_uld lear," two handlers ;_ctiv¢, since the OFF statement is more ffneral than the ON
statements. To _ancel them both would require two statements:

•
OFF ERRORS(I:);

• 4 OFF ERRORS.*:

Likewise, the sequence:

ON ERRORS(I:) IGNORE.

,. OFF ERRORS(1:2):

'{ does not exclude ERRORS(I:2) from the handler. Unlets ther_ it an iden#catly (plus or
minus _, trailing colon) subscripted ON ERROR statement in the tame block, OFF ERROk
will do nothinlL

_,D* "

, r l'
.4

_, tt

1980004512-192

IO-I. _ _'rror Rtrovfr;'

.-,g

Exercltes

10.SA In what ways is it possible for an error handler to bc deactivafed?

IO.:B In the followmlt ¢xampl_ of sequences of ON ERROK and OFF ERROR state-
ments, which handlers are left active after the sequence?

a) ON ERRORSI IGNORE;
ON ERRORS(I:. _) IGNORE.
ON ERRORS(::I) IGNORE:
OFF ERROR:
OFF ERRORS(1:3)

b) ON ERRORSI IGNORE:
ON ERROR$(I:I) IGNORE:

ON ERRORS(2:) IGNORE;
a OFF ERRORS(I:);

OFF ERRORS(:: I):

10.3 OTHER ERROR tON IROL CONSTRUCTS

In addilimJ to ON and OFF ERROR. which activate and deactivate error handlers.

HAL/S provideJ the SEND ERROR statement, whseh annunciates an error corn, ilion, and
' a pair of built-in functions which allow information to be obtained from the recovery

system

The SEND ERROR staten,ent has two rues: to simulate the o¢¢urrenoP of system-
defined errors for testinll and other purpmcs, and to allow the user to define additional
error types. It has only one form

SEND ERRORS(n ! :n:);

p
• .' where nl and n,+ are inlClmn* computable at ctwnpL.h'-timeand m the valid nmll¢ of error

" Ircmi_ and codes sF .:il'a'd by the appropriate HAL/S User's Manual. The effect of the

SEND ERROR statement is merely to trilller whatever hlndkr has bccn set tip for the

specified error.

When • SEND ERROR il exe,:uted, the error environment is lelgehed fm an applicable
ON ERROR handler, If the action is +.+_executable statement. Control iS l_tled to it and
exec-,ll/oa ¢onlimJ¢t willlout In error meulle. If Ih¢ iGNORE opm was specified, execu-
tim ¢m+linm at the llllemcnt foUe.Winll I1_ SJENDERROR, _ without l mCUall¢. If+

the action is SYSTEM. or nc error handler is found, then an en'or most•It is lenemted,

+_la •

#,
r

.+

1980004512-193

J
OtAer _'.or Control _;,nltnJcrs IO.I J •

i"

: and either t_e run is terminated, or execution continues a[the statement followinl[Ihe SEND /
EPROR. The User'sManual stales whether execution will continue" after an error of each

system-defined type. Generally, if"the jroup and codeare not system*defined(i.e. not listed
in the User's Manual) the SYSTEM act._onallows execution to continue. Thus, nt is possible
to write a "standard fixup" for a uJer-defined error, as sl'_wn below.

15 LOG10"
n FU_r|ONa X) SCaLJll !
15 OlCLUtq[X $¢JLAII;
n _[F x • 0 YNZH
el l['lrl'ul_ LOGeX! / L_(ll);
15 ,_LSI[
rl 00;

el sfNo | imol, ;
I qzl

a 15 mlrTUIl_ LO6{AaIIx}) / L_(|II;

fl lk_;
n CLOS|LO(;;I;

i,

"|ow, when LOGIO is revoked with 8 neptive arl[um_nt, el_or 9. I will result. ThiJ error
may be handled by the calllnj routine in Ihe usualway; e.|.

DECLARE N SCALAR IN|';'IAIA- I);
ON ERRORS(9:I) DO;

N " ._0:
I_ND:

WRITE(6) LOGI0(N;.

This code will write ioJlO(I00) If the next two slatements were:

_" _ OFF ERRORS(9: I);
• • WRITE(6) LOG_-99)..

there wooJd be no active handler for enor 9: I, so a:: erro6'mmmqe v ouk; be print,_d and

i, execut_n would continue at _ me¢ond RETURN ststemenl i_, LOGIO. Thb RETURN
slalemcnt serves as a "standard flxup" for a neptiv¢ r.rjumemt to LOGIO; in this c_,

•_ ,'nl110(99) wouM be returned by the function.

b

1980004512-194

10-14 Erro Recovery

SEND ERROR is a relativelyexpensive statement: when anerrori_sent, many machine _:
instructions may be needed to search the error environment for an appropriate handler.
Hence, it should be used only to indicate exceptional conditions, or "errors", not condi-
tions which are expected to occur frequently. The SEND ERROR statement is most ::
appro,.dately used in utility routines (procedures and functions that are invoked from many
plac o indieatg I_alid arguments, and in instances where a "catastrophic" condition is ,
c._ _,_d by_¢earylow level code but canonly be handled in an outer block, perhaps by some ..
sortof controlled restart.

In addition to the ON, OFF, and SEND errorstatements, HAL/S providestwo built-in
functions, ERRGRP and ERRNUM, which provide information about previous errors.
These functions do not _quire any arguments; they return integers which represent the j-
group and code, respectively, of the last error that occurred in the process* that invokes
them. If no errorshave occurred, they return zero.

• These functions are used primarily when a number of errors are handled by a single
ON ERROR statement, as illustrated below:

ON ERROR DO:
WRITE(6) 'RUN STOPPED DUE TO ERROR'
[IERRGRPI I ':' 11ERRNUM;
RETURN; i

END;

One additional form of ON ERROR statement is provided. This form allows event
variables to be manipulated when an error occurs. The form of this type of error recovery
action is described in the language specification. Event variablesare discussed in Chapter
Twelve.

Exercises

10.3A Whatare the two uses for the HAL/SSEND ERROR construct?

_" _ 10.3B Say we enter a program block, P, which calls some procedure A, which in turn
• dr , calls procedure B. In the code block for B, there is an ON ERROR$(I :) IGNORE "_

statement and no other error handlers. Now say error (i:3) occurs during the _:
execution of the program. Does the program need to search code blocks A and P

-: for the error handlers for error (I :3) or will it automatically ignore the error because
the statement ON ERRORS1 was found in that block?

¢

trt_ < *Thetermprocessis definedinChapter1!. Hereit rosy betekento means proem ms/all ofits internal _'
,_ ' blocks.

, r t, "_ ::

1

"_'_"__,_,_'_'_ ' •

I.

1980004512-195

Other Error Control Constructs 10-15

"r

End of Chapter Problems

_ IOA Consider a HAL/S program with the following lexicai structure:

P: PROGRAM Say the execution of the program
procedes as follows: ::

; P ", ('_ executed

ON ERRORS1 IGNORE; P calls A
ON ERRORS2 IGNORE:

'; A 4 Q executed _'

Q A calls B ":

A: PROCEDURE; B -* (_ executed

Q B)
executed

ON ERRORS(I:2) IGNORE; B returns to A .]

OFF ERRORS(I:); A -* _ executed ,_) A -* executed

r_ROCEDURE; A returns to PB:
OFF ERRORS(I:2); P -* (VII) executed
ON ERROR$(2:I) IGNORE;
ON ERRORS(3:) IGNORE_ execution st_ps

What happens if the following

(_ errors occur at these times (i.e.,error mes_ge or no error message)?

OFF FRROR$(2:);
a) ERROR$(I:I) at C

a" t b) ERRORS(3:I) at -_'J
_ • , CLOSE B: c) ERROR$(2:I) at I<J

d) ERRORS(2:2) at (_ V

e) ERRORS(I:2) at V
CLOSE A: g/

f) ERRORS(2:I) at (r

@ -,g) ERROR$(2:I) at II

CLOSE P; h) ERROR$(I:I) at QII i

': i) ERRORS(I:2) at _q_

j) ERRORS(I:3) at Qrl
-,,_' k) ERRORS(3:3) at _rl

•" ' I) ERRORS(I:I) at

ft,, i

• ?

]9800045]2-]96

.\

The Unit o[Compilation 11-1

! !.0 STRUCTURINGLARGEAPPLICATIONS

In this chapter the diseux_ion of the HALLSfacilities for buildinga program complex
consisting of many separately compiled pieces is presented. First, we will describe the unit
of compilation, which has been a PROGRAMin previouschapters but is not restricted to

this type. Then we will discuss means of putting these units together in a way that is suit- _
able for _, particularapplication. Finally, we will introduce the concept of multi-program-
ming and discuss some of the methods of safely sharingcode anddatabetween programsthat
execute "simultaneously". This discussion will lead into the real-timecontrol statements to
be presented in ChapterTwelve.

/

! I. ! THE UNITOF COMPILATION ':

A unit of compilation is a sequence of HAL/S statements which comprise a complete,

valid input to the compiler. It must be either a program,a procedure, a function or a com- _
pool (common datapool). Programshavealready been discussedat length, though no means

* of invoking them has yet been presented. This is because programsreceive control directly
from an operating system, not from other HALLScode.

Procedures and functions can be compiled independently so they can be sharedamong
programs;a compool is a block of data that canbe sharedamongseparatelycompiled units.
Thus, programs are the primary compilation units while the others provide global code"and
data.

There are two major reasons for dividinga software system into separately compilable
units. Obviously, when several programmerscollaborate on a system, it is convenient if they
can compile their own work independently. A more important reason stems from the way
programunits receive control. The capabilities of the operatingsystem in use may determine
the appropriate structurefor an application.

Under an operating system which supports the full HALLSreal-timesyntax (describedm _'
Chapter Twelve), many programsmay be "simultaneously" active and compete for the use
of the computer hardwarebased on a user specified priority. Provisionis made for progrems _
to be run cyclicly, to wait for given occurrences and to receive control when interrupts
occur. The operating system provides these capabilities for the invocation of PROGRAMs

_" _ and TASKs (colle_.,,_cly called processes). Thus, a software system may be divided into
4 ' programsto implementa desired dynamic (real-time) structure.

Unlike procedures, functions and tasks, programsand compools may not be nested in
any other blocks.

The following figure showshow theseblocks mightbe used in a simpleflight application.

!

J

1980004512-197

il.2 $imcmr_g large Applications

common $ubrout | ne$
dat__a IILliCIT:

Fu_CT!ON/

COW'POOL i tnfomat_o_ flow)........................... • -- ----. PROCEOURE.
posttton L Jveloctty

COtiTROL" : pROGR/_
p_q.J_,t¢ p_q_p.J,w

k'u"c_l°"'j F,_L_: I
L ,_Eou,,_,j7 -I 3 I'°'_'lETC, : pR_rl_; JPROCEDURE

" _"° o0,,_,_;-_
i¢ ,

.d
I •

i

1980004512-198

The Unit ol ('o;npdat#on II-3

, This diagram shows the software divided into ,hree programs, each with internal pro- ..
cedures and functions, and a compool and three independently compiled subroutines. All _,

together, there are seven compilable units which must be compiled in an appropriate se- .:
:_ quence and linked together, in the remainder of this section we will discuss the rules for
_" writing the components of a program complex.

The LIMIT function and the procedures, FILTER and INTERPOLATE, are compiled
separately so that they can be called from any of the programs. Such procedures and func- _.
tions are called comsubs (from "'common subroutir.es"). A comsub .'nag be coded evactly as
if it were contained m some program, For instance, the LIMIT function might be exactly as _-
ii appeared in Chapter Seven.

n L._MIT : [F1 FUT,_TI_IfVALUEt e_._) SCALAI_; \

rl DECLtPE SCALAP. ["-
• I1 VALUE, _OU_,._; I

H ZF V.aLUE > I_t.?._ THEN I

N PETb'_rI BCUt._ ; I '_
/I IF VS_UE • -_C_40 THEN I

n _'trc_N -t_0tn:o; I
n RETURN VtLU[• I
tl CLOSE LIMIT; !

/
Aside from the fact that a comsuh is not contained in any block, and thus cannot reference
outer variables via name scoping rules, all of the statements about procedures and functions _"q

° made in previous chapters also apply to comsubs.

Some of the consequences of this general statement may not be immediately obvious.

For one, comsubs may have additional procedures and functions nested within them, Stop- !:
ins rules apply to blocks contained in a comsub just as they would to blocks contained in a
program. In fact, the only significant difference between an independently compiled proce.
dure without parameters and a program is the manner of invocation: programs are never
CALLed and procedures normally do not receive control directly from the operating sys-

tem. _

. a It is also worth noting that the error recovery system does not distinguish between com-
, d' subs and internal procedures and functions. If an error occurs in a com_b and no local ON

ERROR statement applies, the error environment of the calling block is searched, whether

-_ that block is a proipmm, another comsub, or an internal procedure of some program or
comsub.

Cormuhs are also referenced in the tame way u corresponding internal blocks; there is !
_- no way to tell by inspection of a CALL statement or function invocation whether the refer-

enced block is internal to the compilation unit or external (a comsub). Comsub. may have

any number of argumente of any type, exactly as described in Chapter Seven, The various

1980004512-199

11.4 Structures#LargeApplications "_

rules about matchingdata types, restrictionson ASSIGN parameters,automatic conversions,
etc., still apply. In order to enforce these rules the compiler needs to know the declared ._
types of comsub's formal parameters.This information is communicated via the block tem-
plate. •

,f

Under most implementations of the HALLScompiler, a block template is automatically _"
generated whenever a program,comsub, or compool is compiled. The block template con- _'-.
tains all the information needed to reference that block from another compilation unit. In ..
the case of a comsub, this information consists of its name, the sequence and types of its
formal parameters,and the type of its returnvalue, if any. A comsub is made accessible to .-
a compilation by including its template. For instance, a programwhich uses the LIMITcorn-
sub isshown below:

D INCLUDE TEMPLATE LIMIT
P: PROGRAM; _

DECLARE X SCALAR I_'!ITIAL(12); \.
• X = LIMIT(X,IO);

CLOSE P;

INCLUDE is a compiler directive, as denoted by the character D in column one. It in-
structs the compiler to merge the template for block LIMIT into the compilation at the '_
point of the INCLUDEdirective. Any number of templates may be so included; the NAVI-
GATIONprogrammight becompiled as: :

columnI t

D INCLUDE TEMPLATE GNC_POOL
D INCLUDE TEMPLATE LIMIT

D INCLUDE TEMPLATE FILTER
NAVIGATION: PROGRAM;

CLOSE NAVIGATION;

" J Note that these templates are included prior to the program statement. This syntax
• • ' emphasizes the fact that the blocks GNC_POOL, LIMIT,and FILTERare external to NAV-

IGATION. The printed output from the compiler contains a listing of each template that i
was included. The template for LIMIT.appearsbelow:

LIMIT: EXTERNAL FUNCTION(VALUE,BOUND) SCALAR;
DECLARE SCALAR, VALUE, BOUND; _-

' CLOSE LIMIT;

The template for a comsub consists of the headerline with the word EXTERNALinserted,
._ the declarationsof any formal and assign parameters,and the CLOSEstatement. Theseave

" _. the only portions of a procedure or function block that are relevant outside that block*.

.- *S¢opinI rulesmakeothe!data itemsirrelevant,andnowayof brlmchingintothemiddleof a blockit
, . pmvidad,

*. ,
r

2

1980004512-200

T'_

The I/nit of Compilation] t-J

_.. The format of a block template is unimportant when a compiler with automatic tem-

plate generation and the include directive is used. These features are present in all current
compilers, but they are not included in the HALLS Languaga Specification and thus are not

._ guaranteed to be present in all implementations. The format of a template is specified, how-
," ever. Hence, if the template cannot be INCLUDEd, it may be hand-coded as part of the _

*,ource prior to the program statement.

' A program may invoke a comsub if it includes the template for that comsub prior to the .

i program statement. This mechanism provides for executable code to be shared among sepa-rate compilation units.

L Programs _nerally need to share data as well: the only way to pass infomlation from

one program to another is via a compooL A compool is a named block of DECLARE, RE-
: PLACE, and STRUCTURE statements; the variables in a compool are acce_ible to any com-

pilation unit which INCLUDEs the compool's template.
?

_t The diagram at the beginning of this section shows how a compool is used to interface
_' the Guidance, Navigation, and Control p_ms. This compooi could be coded as shown
• below.

M GNC_I_OL:
M ceMrOOL;

¢ FOLLOUI_ O[¢LARIS Aft NAV TO GUIOANCE INTERFACES

M O[CLAaE P0SITZON VECTOtW!
n DECLARE VELOCITY VECTO;_;

. ¢ FOLL;II_ DECLARES ARE GPJIOANGETO ¢OHTOOL ¢O_L_S

i M OECLA_[PITCH CQg_lA,_) SCALAI_;
_, M DECLAIMS ROLL.CO'C.'lkNO SCALAg¢ INZTZALI0)|

n CLOSE g_C.POOL;

_" t _ As this indicates, a compool is delimited by a block header and a CLOSE statement ,
_. _' , _ much like the other block types. Unlike other HAL/S blocks, however, a compool consisl_

only o_a DECLARE group; no executable statements or nested blocks are allowed. It may
contain DECLARE and REPLACE statements and structure templates. Generally, any

_, DECLARE statement which may appear in a program may appear in a compool. There are

_" only two exceptions; both remlting from the lack of executable code in a compool; no
AUTOMATIC data is allowed in a compool, and no label (e.g. function and NONHAL pro-
cedure) declarations are allowed in a compool, it should be noted from the example that _
static initialization is allowed, and takes the same form as in other blocks.

_,¢" ._ti! i

S

]9800045]2--20]

11-6 Structurtn& Large .lpplicarums ."

Compiling a compool serves two purposes: to reserve a block of storase containing any
specified initial values, and to generate the compool template. A compool template contains

all of the information present in the compool source, in fact, if automatic template genera-
tion is not available, the template may be constructed from the source merely by inserting
"EXTERNAL" before "COMPOOL" in the block header. Normally, however, only an IN- i!
CLUDE directive is needed to make compool variables accessible to another compilation
unit. _:

When a program includes a compool template, the variables in that compool nlay be ref-
erenced, assigned, and used in any way appropriate to their data types. Placing a variable in _'
a compool rather than at the program level does not, by itself impose any restrictions on the
way that variables may be used by the program. This includes references to the variable
from nested blocks; we will discuss the application of scoping rules to compool variables :
and comsubs in the next section.

Exercises

I I.IA What are the major r:asons for building a program complex with comsubs and com-
pools, as opposed to a single large program?

I I.IB Say an error occurs in some comsub, and no ON LRROR statement that applies to
the error is found in the comsub. What determines the error handler in this case?

!
I I.IC a) Since a compool contains no executable statements, why must it be compiled at

all?

b) What is the purpose of a compool template?

! 1.2 BUILDING A PROGRAM COMPLEX

From the viewpoint of scoping rules, the templates included in a compilation comprise
an outermost block in which the main compilation unit (i.e. the program, comsub, or corn-
pool being compiled) is nested.

Chapter Seven described the HAL/S scoping rules in terms of block diagrams like the one
following. From these rules it follows that: '"

•

, • ' I) The comsub S can be called from anywhere within blocks P and O.

2) The variables A and B can be referenced from anywhere in blocks P and O.

3) The variable X can be referenced only from block S. •

This example illustrates the position of template with regard to the main compilation
; unit•

It

1980004512-202

Buddin8 .4 Prngmm Complex ! I. 7

CompUation Block Structure for ScopinBRules

C: EXTERNAL COMPOOL:
_ DECLARE SCALAR,AB; 0MP00L0ATA

CLOSE C:
S: EXTERNAL PROCEDURE(X): 0ECLARESCALARA,B,-- /

......-"

DECLARE X SCALAR: I _: PR0C[0URE; ,_CLOSE S: DECLAREX;
P: PROGRAM: I _-

I, ,JQ: PROCEDURE: p: pR_;
CLOSE Q:

CLOSE P: Q:Pa0CE_R_

11

From the diagram,one might conclude that A and B can be referenced from block S:
This is true if and only i[the template C is included when S is compiled. Thus, the "outer-
most block" is not universal: its contents may appeardifferent to each compilation unit,
depending on which templates are included. This mechanism supports "private" compooh
andcomsubs,aswe shallsee.

Returning to the exampleof the communicatingGUIDANCE, NAVIGATION. and
CONTROLprograms, supposethat the templates included by each of the seven compilation t
units are as indicated below:

CompilationUnit Type TemplatesIncluded

NAVIGATION PROGRAM GNC_POOL LIMIT, FILTER

GUIDANCE PROGRAM GNCPOOL

CONTROL PROGRAM GNC_POOL, FILTER INTERPOLATE

• ¢ , GNC _POOL COMPOOL NONE
LIMIT FUNCTION NONE

FILTER PROCEDURE LIMIT

INTERPOLATE PROCEDURE GNC..POOL

With this structure, the contents of the "outermost block" vary ¢onsider._blyfrom compila-

.:. tion to compilation,asshown:

Ic

¢

"i
_m

q9800045q 2-203

11-8 Stru('tu.ng l.arge Applications

POSITIO_I.VELOCITY POSITIOn.VELOCITY ,_

PITCH C_D. ROLL CrID [LI_IT I PlTCflUID. ROLL_f_
1 LIMIT] _ *

IGUIDANCE
I _ILT(R I ; FILTER

(* NAVIGATION I [I i

*tndlcates the module being compiled.

As the previous table implies, any type of compilation unit may include the template of
any other compilation unit. Thus, comsubs may accesscompool variables or call other corn-
subs;compools may include the templates of other compools, (to utilize global REPLACE
statements defininll array sizes, for instance). Program blocks also have templates which may

, be included by any type of compilation unit; we will see the utihty of program templates in
later sections.

From this discussion it can be seen that access to comsubs and compool variables is con-
trolled by the inclusion of templates. In buildin_ a particular program complex it may be

desirable to set up managerial rules concerning which modules may accesswhich data and
subroutines. Comsub templates are included one at a time. but when a ¢ompool template is
included, all of the variables in that compool becomeacce,ible. If it is desirable to partition
compool data, either of two approaches may be taken: the ACCESS system may be used o_ "_
multiple compoob may be created.

• # ACCESS is a HAL/S keyword. Under some versions of the compiler, an exterually main-
a rained data base of accets-rights information can augment the normal _coping rules to
• _r furlber restrict (not expand) the visibility of comsubsand compool data. This system is tm- _,

plementation dependent, somewhat complicated, and will not be discutsed further in this
book. However, further details are contained in the Lanlluue Specification.

T

The simplest method of restricting acce,, to compool variables is via multiple compools.
'_ For instance, the following structur_ might bea better arrangement of the compool data for

, : the example program complex.

t

,Ib

1980004512-204

+
$

-5
guddlnll 4 Program Comple¢ 11.9 _

! GTOC:C_POOL] ! NTOG:COMPOOL I _,FIT_'H CND, ROLL CMD POSTTION, VELOCITY[

.!
CONTROL NAVI GAT! ON i

, +_

Here, the interfaces between GUIDANCE and CONTROL are in one compool, and the
interfaces between NAVIGATION and GUIDANCE are in another. The NAVIGATION and

CONTROL orog,-am._would include only one compool each; in this way multiple compoois
tend to limit the possible influences of one compilation unit on another. In this case. no "
data is shared hetw_n NAVIGATION and CONTROL.

The GUIDANCE program would ha_e to include the templates for both compools. The

order in which the_e templates are included is irrelevant: all compools are included at the r_ +_
+,

.- same level. Thus, the previous dialram of lcopmll rules while compiling GUIDANCE still
holds. Since there is always only one scope level outside of the maun unit of compilatior,,
the names of rariables in one ('ompooi must not duplicate the names o]" variables in atmther

compool If both are Included by a single compilation unit. ...

There are, of course, other considerations in structuring an applicatir, n as a set of com-
pilaster, units. For instance, it may be convenient to use only one compoolso that ill global
data can be found in a single listing or so it will be contiguous in memory "or telemetry pur-
W..t_s. The addressintt modes of some computers may create an efficiency trade-off between

i the number of compoob, and their average sizes. Finally. in the next section, we will see that

a" # ' compoob can be eliminated Ihroulh the use of TASK blocks', this decision involves addi-
• # , tional trade-offs.

Suppose, however, that the orilpnal configuration of three prolgrams, one compool, and
i three com_uM, has been cho_n. In this and the previoui tel;lion we have des4:fibed how the

.... various compilation units are coded. The remaininI problem is to compile them in the

applropriite order. Since templates are automatically ;enerated* when each block is com-
• ' piled, the "lowest level" compilation unl|l must be compiled first. Given the table of tern- _

plates included per compilation presented earlier, an ap.,_roprlat¢ sequence for this prolpram
complex is: _

• }

elf Nlomallc tampblt IIIIWlltlon II nol Ivldlbll. lba mda! of colnpilltk_t tl UlrlllVll_t.

i +,it
,

+,

a

1980004512-205

\

?

i I.I0 St_¢twrlnE l, arl¢ Appli¢_tlons _"

GNC POOL, LIMIT, FILTER, INTERPOLATE, GUIDANCE.
NAVIGATION. CONTROL ':

Generally, the necc.ary order of compilation can be determined by inspection. StarlinJ
with compools, then procc_dinli to "'utdity'" comsubs, other comsubs, applicatson programs,
and finally "control" prot_ams is usually adequate. However, the following alliorithm will
always produce an acceptable sequence if one exists: ".

I) Produce a list of templates included by each compilaoon (like the one Iliven here).

2) Compile each module which requires no templates (except for those templates al-
ready generated).

.I) Remove the mod,des that have been compiled from each list.

4_ If not done, repeat step two.

It i_ possible that a point will be r(ached where every module requires at least one template.
• If ._. tk:n there is no suitable sequence. This can happen for three reasons, all of which are

rare:

I t Recursior' If A calls B and B _hen Calls A. no sequence is appropriate. 5olution
Chanl¢ the structure, recursion will not work anyway.

2) A pair of p,olprams schedule or wait for each other, Solution'. Han6-code one ten,-
plate or re._tructure.

3) Trouble with inilialized NAME variables. Solution: Break the loop of circul.,r refer-
ences Ise¢ Chapter Thirteen).

Thesediff+h;ultiesalmost nevcxoccur in well dcsJllnedprogram complexes.

The constructs we have discus_d in this chapter are intended for puttinll s collection of

HAL/$ modules tolpelher. A means of invokinll NONHAL procedures and functions was pre.
senlcd in Chapler Se_n. If parl of s prc_Kam comptcx (e41. special-pmpo_ k_ware inl_-
faces) must be wrilten in aslcmbly lanllUql¢, a few a_ .lional comtrm:ts m'e helpful. The_
axf:

., • t I) RIGID compooh,, which are similar in concept to RIGID stnu:;m'_;

• _' ' ._) EQUATE EXTERNAL sla|el11_nts,which c,m m_e llAL/S v_ldes acc_ibk h'om
amembly lanlullz; and,

3) the abilily to write comsubs ina_,mbly lanlluqc. A zct of macro_ for Ihh purpoK
is IlCnemllysupplied wile the compi_r system.

Mof¢ dclail on .hose feature my b¢ found in the Lanlruap Speciflcaliofl and lhe appfop_

ale XAL/S Umf's Manual. ,:

Anolha _ in de_pm_ • I_Olpramcomplex is the u_ er TASK Mocks ireland of

. ploffi'InU,. The anflwi_ we have been dl_'_lmnl ¢o._id i_ wlilh,., isIhe _ compihllio¢_
unit zh,_m in the _ ms lhe next pmlr.

, re..!I
•;g I

• I

!
|

1 .

b

] 9800045] 2-206

_tldl_r A Pv.£ram C.'omplcx I I,I J

n P:
* H PIIOb'_/,M|

H 01¢L.U_| VI[CT_.
H pOs|'lr tc_, V!v ,._'CITT;
M oIrCL/31."4dCA LA_,

H PZTCH OqO, I_JL L.C'J_;

fl_ll, LZr_L'T:FU_CTXO_ _¢at_;

F5 CLOS[LIMZTI
II FXLTfm:
n P_0CIDUI[| •

C ...

rl ZHTIlIPOLATI[

N PIIOCIOUW| |

¢ .J ...

H CLOSf Z/_TIIPM3LAT| ! *
H 6L_OL_OCI
H TASK!

¢ ¢mTIWPi _ ILg_8 PIINILLq UPe_OIIrIIB

n ¢LOII I_II_L_I i
H _VlI_T_ON:

n Tall(;

C ***

¢LOU NAV_UT|m_

n TLLI_ |

n ¢LOH ¢m/1_8
n ¢LOM Pl

Like palmm,, tasksan code Necks d_* receive.'onU,ol di_cSly from the ageratins
W_ Tasksc_e_ beCALL_': 8heyare uwd _otmFlementmd-Simemluimnents in _he

wmyN pe_lU'nmms,In I'll, tl_. onlydtsSlm;liem_lw_,e,n_ _ I,lsksb tha! tasks
. musealumysbenestedinpee_mms,andmay n_ lh,emaelv_,coeUdatfurlht_rpeOll_mor usk

bioclu. Tbu_ I_ _ ¢hae_ needed8o coevm • peoimm to a uuk _m 8he heui, r m_
meal: the decb_ Woup, execulJlde statements, _ amynested peocedm_ tad fu_tJam

a" m_ ex,c_ the ,a,ne.

1980004512-207

11-12 Structuring Large Applicatton#

HAL/$ allows one level of nested real-time processes: tasks wimm pro_'ams. Scoping

,"ules treat all blocks the same. Thus, a task and all of its internal procedures and functions
may acce_._data declared at the program level.

Task blocks allow any real-time structure to be implemented within a single compilaUon
unit. in Chapter Twelve, a set of _al-time control statements will be presented. These :.ate-
ments instruct the operating system to start executing a program or task at some rate and
priority, to stop cycling a process, and so forth. The use of tasks as well as programs to im-
plement a real-time structure tends to minimize the amount of compool data, and allows re-
lated processes to be consolidated in a single compilation unit. One disadvantage of using

task blocks is that they can only be SCHEDULEd, CANCELLed, etc., from within the con-
taining program. If a system consists of several programs, each containint_ tasks, then the

"control" code which activates and de-activates the various processes must be distributed
among the several pa_0grams.

J Exercises

I 1.2A Con_ider the following block structure of a program complex:

DECLARE SCALAR, A, B;

P: PROGRAM;

F: FUNCTION;
DECLARE INTEGER, A, B

P. PROCEDURE ;
• _ DECLARE ! INTEGER ;

a_f

From which blocks can the scalars A and B be referenced?

_ I 1,2B In *he figure on page 1i-2, It is zhowr, that the compool GNC_POOL is not included

: _ in the compilation of the unit FILTER. Why not?

/-

1980004512-208

Mul, .l'boteemmfteql C,)elsldr_ttl_ns 11.13

I I.._(' Why is it desirable that the namesof variables in a compool be unique with respect

: to the names ofvariables in other compools? _

_. I 1,21) The text stales that a reasonahle order for compiling the various ,mils for the exam-
ple on page I 1-00 is:

GNC P(,X)L,LIMIT, FiI.TER, INTFRPOI.ATE, GUIDANCE,]

NAVIGATION, (_)NTROL:] ,,:

For each of the followinl_ possible orders of compilation, stile whether they will
necessitatethe hand coding of one or more templates, and why.

al GNC POOL, INTERPOLATE. GIIIDANCE, LIMIT. NAVIGATION. FILTI:R. "
('t)NI'ROL

h) GNC PO()L. INTFRP()LATE, LIMIT. CONTROL. FILTER. GUIDANCE,
NAVIGATION ._,

a c) GNC POOL. INTERPOLATE. (;UIDANCE. LIMIT. FILTER, CONTROL.
NAVIGATION

d) NAVIGATION. CONTROL. GUII)AN('F, LIMIT, FILTER. INTERPOLATE.
(;N(" POOL

1 1.3 MULTI-PROGRAMMING CONSIDERATIONS

We have u_d the tem_ "'process" to refer to either a program or a task; this tcmdnology
is used thn)ushout the HALLS documentation. The temi multi-processin8, however, has
come to referto theexecutionofsoftwareon a computer orsetof linkedcomputerswhich
can literallyexecutemore thenone pieceor code at a time,e.g.programming multiple

physicalproce_ors.The teml "'multi-programming'"refers to the appearance of this situa-
tlon:the u_ of eitheractualmultipleprocessorsor simulatedmultipleprocesso_ In the

lattercase.the computer'scentralprocessingunitis"time-shared"or allocatedto each

activeproce_ lola briefintervalinsuccessmq.Rcallocationof theCPU may resu|tfrom
initiationor completionor I/0,expirationof a timehmit,or otherfactors.St'iceitism)t

possibleto predictwhich }IAL/S statementwillbe _xecutingwhen a "process-swap"
• ii

a occurs*, programs must be designedso that a swap can safely t_cur at any po;nt,
l

i •

I *In fact, thetimlallmaynotberepeatable,

• •

"I900045"I 2-209

II-14 Strucmrm_t La_e Apphmttonx

H fgJLTI :
H PROGRAM;

,,- H DECLAREqJCALAR,
H A, S. C;

C
C
¢

n XF A NOT u 0 'THEN
M DO;
M 8sC/A;

C
C
C

N [1t0;
N T:
11 TASK;
N A.O;

| n CLOSET;
H CLOSEIIULTI;

Consider the above code. Suppose that MULTI receives control and executes the IF

statement, findt_ng A not equal to zero: then. for some reason, the processor is reallocated

to task T. When T completes. MULTI will resume where it left off. and divide by ".er,.

The problem is that two processes share data (viz. A) without any protection from an un-

timely process-swap, if we could guarantee that the swap would never occur between the

test for A,,0 and the division by A. the problem would be solved. This can be done by

means of the UPDATE block and locked data. as shown below.

M 6ETTEff:
N I_OWtAH;
ft OECLAR[A SCALARLOCK(I);
II DECLARESCALAR,
11 II, C;

C

li CC

II UI_qDA'TI[;
I1 _[PA NOT • O 11_lrH
N 00;

i II lime/a;

fl EXOI
n CLOSEt

II T:• n TASKl

i. N A#_*:
H CLOSE;
II CLOSET;

i II CLOSEBETTEai ,

:i
%

1980004512-210

: !

MultJ-ProgrammingConsiderationsIt-t5 '-

Three changes have been made in the BETTER program: the variable J, has been de-
,_:clared with the attribute LOCK(I), and both uses of A have been enclosed in UPDATE

blocks. The parenthesized "'1" indicates the assignment of A to lock group one. The use of !
other lock groups is discussed later in this section.

Data which is used by more than one process should normally be locked. Locked data ,.
can only be referenced from within an update block; the system ensures that only one up- _:b
date block which uses a given lock group is active at any instant of time. Thus, this capabil-
ity is as good as preventing process swaps over a sequence of statements: a swap may occur, ,
but the new process will not be permitted to execute an update block that pertains to the ',,
same lock group. An update block allows a process to obtai, exclusive access to one or more

locked variables. When an update block finishes, the locked variables become available to ._
other processes, which also must access them via update blocks. :-

An update block is executed when the sequentia' flow of control reaches it; in this re- :_

gard it behaves like a simple DO... FND group. _,owever, from the viewpoint of scoping ,,
rules, an update block is equivalent to any of th other block types; it may even have its

own DECLARE group. An update block behaves like a procedure with respect to error re- ,_
covery, except that the "'calling" block is defined to be the immediately containing block.

An update block may be nested in a block of any other type (except compool), and may ,
contain further procedure or function blocks. There are some restrictions on the executable _
statements that may be used in an update block. The following are prohibited:

l) !/O statements, i,
.'2) Calls to proceduresor invocation of functions, except for those nestedin the update

block,and

3) Real-timestatementsexceptforSET, RESET. and SIGNAL (seeChapterTwelve).

Thesestatementsarenotallowedinupdateblocks,primarilybecausetheypotentiallytakea

longtimetoexecute.Itisdesirableto minimizethetimespentinan updateblockbecause

while an update block is executing, other processes may be stalled even if those processes
are more critical (ofa higher priority)•

It is almost always necessary to LOCK data which is used by more than one process. The
compiler does not enforce this rule, and there are cases (e.g. read only data) in which the

• protection offered by locked data is not required. These cases are the exception rather than

• tr , the rule. For instance, the GNC_POOL compool from the earlier example should be coded
as:

GNC_POOL: COMPOOL;
DECLARE POSITION VECTOR LOCK(I);

DECLARE VELOCITY VECTOR LOCK(I); _ •
- DECLARE PITCH_CMD SCALAR LOCK(2);

DECLARE ROLL_CMD SCALAR LOCK(2); !
i CLOSE GNC_POOL; : _'

, i

t

J }

7_

k

q9800045 q2-2 qq

I 1.16 Strucrurml l,a_¢ Apphcatio_ I

Here, two lock groups (I and 2) are used. Group I is used for the Navigation to Guid-
ance interface, and group 2 is used for the Guidance to Control interface. The selection of
lock groups is entirely up to the user; the only constraint imposed by the HAL/S system is
an implementation-dependent mavimum number of lock groups. It would be possible to use :
the same group for all locked data, and this may be convenient during initial development.
An appropriate assignment of lock groups, however, can lead to improved throughput. This ._
is because several update blocks can be active simultaneously provided that each uses a dif-
ferent lock group, or set of groups, with no overlap. Hence, the overhead associated with a
number of process swaps may be avoided, Furthermore, the amount of jitter in cyclic proc-

r _ e_S may be reduced, since the chances of being stalled or suspended due to update block _
conflicts are lessened. In our example, Control will never have to wait for Navigation since
their update blocks reference variables from different lock groups.

The Guidance program might begin as in the figun_ below. As this code implies, it is ',
sometimes preferable to copy a small amount of data (Pt JrrlON and VELOCITY) rather
than extend the update block to include all of the comp ,rations involving these variables. ,!

* This minimizes the impact to other processes while stili af _rding the protection against, for
instance, processing a vector that has been only partially ul rated.

H I I ii I I __

M G,'I_..P_I.:

H EXTEI_.'_.L¢CHP_OL; •
14 {_.Ct.t,P,-'-;0S'.1'3:_2NVI[CT0_4($!LOCK(Xl;

INCLUDED n OSCLL;EV,_C:ZTYV_CT_;) LOC_fX);
TENPLATE . o_.cLt_ pitt, cc_,_::3SCtLt_;

[t CLOS";

O V[RSI_,'41

11 CI_CLAREVECTOR,
H V_.L:', POSH:;

I1 COIsY.XttI_'UTS:
rt L;P:,S'ft;

V[L_ITY;
[- .
H PC$_ z @OSZTIC_;

• ' IP _ CLOSECOP_.D_U?S; !

c
C

IS CLOSr,_UI0th'Cl_;

_his example also shows a labelled update block. The label ts optional, and is used here

_, only for self-documentation.

There is one exception to the 8eneral rule that locked data may only be referenced from

within an update block: A locked variable may be passed as an assign parameter to a proce-
dure. This does not defeat the protection, however, since the corresponding parameter
declaration must also specify the LOCK attribute; thus it in turn can only be referenced

t_ from within an update block or passed to further procedures.

,.t_f *

1980004512-212

i

Multi.Programmm#Considerations I I-I 7

The update block and locked data provide a means of safely sharing data among inde-
pendent real-time processes: a similar mechanism for shared code is provided via EXCLU-
SIVE procedures and functions. This type of protection is specified more simply. Just the

/ appearance of tile word EXCLUSIVE on a procedure or function header makes that block
_. accessible to only one process at a time. To see how and why this feature is used, consider

_ ._ this function.

M ru_TI_,KAI SCALAR E_LUSIVE; "_
11 DECLARE A ARRAY|m) SCALAR;

n DECLARE TOTAL SCALAR INZTI'ALIOI AUI"OttATZC; _]
H O0 FO_ TEH_O_ARY Z • I TO SZZE(IA|); 9

0' H TOTAL = TOTAL 4' A ; "_

• H RETIJI_'N TOTAL / $1'ZEI[A]|;
H CLOSE HEAH;

a ;.

Suppose the MEAN function was not exclusive. If two processes invoked it. there could
be a conflict in the use of TOTAL, even though it is only assigned from within MEAN. If
one process had executed part of the loop when the other invoked MEAN and AUTO-
MATICally re-initialized TOTAL, the first process would get an invalid result. Thus, the

problem with sharing procedures and functions among processes is a shared data conflict on

i the local data declared in the shared block, this problem can be avoided by making shared _'I
code blocks EXCLUSIVE• No new construct s needed when an exclusive procedure or func- i
lion is invoked, but the system will prevent multiple simultaneous users of the block by
stalling the second process that tries to invoke it. Exclusive routines are sometimes used for i

operational reasons having nothing to do with shared data. For instance, a procedure to do
inertial measurement unit (IMU) calibration might be made exclusive simply to avoid the "_
risk of calibratingmore than one at a time.

! Another keyword that can be specified instead of EXCLUSIVE is REENTRANT. _._
Neither one is the default: if a procedure or function is not EXCLUSIVE or REENTRANT

• j then it cannot safely be invoked from multiple processes, but no protection mechanism is -_

• present, i,dr , !

procedure or function may be executed "'simultaneously" by ,severalA REENTRANT

processes. That is, if program A is executing a reentrant procedure, R. when it is interrupted
_" by program B which also invokes R, when B completes and A resumes, there will be no ad-

verse affect.

; _ Simply coding the keyword REENTRANTis not sufficient to makea block safely "re-
tT enterable", The following rules must also be obeyed:

2 I) Any block invoked by the reentrantblock must also be reentrant,and
•

2) Any local data must be declared to be AUTOMA I IC whether it is initialized or not.

} i
l

]9800045]2-2]3

i

It.IS $lmcmrlnlt Largc Applloltions

We have already stated that the difficulty in sharing a cod_: block is really a conflict in
the use of local data. Inside a procedure off unction with the REENTRANT attrihute, the
effect of the AUTOMATIC attribute b expanded. Each user of a reentrant procedure aL-

_ ceases a separate copy of the local variables if they are automatic. Thus, any conflict is pre-
vented. Parameters and TEMPORARY data cannot and need not be automatic, The MEAN

function can be made reentnmt simply by changing the EXCLUSIVE keyword to RE-
ENTRANT. The necessary conditions for successful re-entrancy are described more fully
in the HAL/S Language Specification.

This chapter has defined the unit of compilation, and introduced the idea of a program
complex, consisting of several real-time processes. It has described how global code and data
can be made accessible to these processes, and how the adverse effects of "simultaneous"
access can be avoided. In Chapter Twelve, we will describe the HAL/S statement_ for creating

and controlling these processes and further discuss multi-programming concepts and their
application to aerospace systems.

11

Exercises

I 1.3A A bank runs several programs to modify savings and checking accounts in a multi-
programming environment. The procedure MOVE SAVE_ TO_CHECK, used to
move money from a savings account to a checking account, is shared by all the pro-
grants, and looks like this:

MOVESAVE TO CHECK: PROCEDURE(ID, AMOUNT);

SAVINGS$ID = SAVINGS$1D--AMOUNT:
CHECKING$1D = CHECKING$1D+AMOUNT;

CLOSE;

• _ SAVINGS and CHECKING are compool variables shared by all the programs.a

e • a) What potential error is present in this system?

b) How can it be fixed?

I 1.3B The bank in exercise I 1.3A awards interest periodically and records each interest
transaction for later printing on the customer's statement. The shared procedure
AWARD INTEREST performs this task:

AWARD_INTEREST: PROCEDURE(ID):
DECLARF INTEREST INTEGER:

J[r: - ItJJi _-"

J,

, \�Ì51980004512-214

Multi-Fro&rammlnIConaidcratlons11-19

INTEREST = SAVINGS$1D INTEREST RATE, _:
SAVINGS$1D = SAVINGSSID+INTEREST;
CALL LOG_INTEREST(ID, INTEREST),

CLOSE: .',

a) What potential error is present?

b) How can it be fixed?

r

1980004512-215

t

TheSCHEDULE Statement12-I

12.0 REAL-TIME STATEMENTS

Most aerospace applications have a set of timing constraints which comprise a major
facet of the entire problem definition. Meeting these constraints generally requires interac-

_ tions with an operating system.

Real-time operating systems for flight or process control applications can vary in many
ways. Nonetheless, certain capabilities, such as invoking a code block at a specified fre-

[quency, are almost always provided. By examining several operating systems, it is possible
to abstract a set of primitives (i.e. conceptual operatmg system functions) in which the vari-

i ous facilities can be expressed. Then the real-time requirements of an application can be
_" described without referencing any particular operating system. The HAL/S statements de-
: scribed in this chapter are such a set of primitives, through which real-time requirements can

be expressed in a machine-independe,_t manner.

: HAL/S suuests the point of view that real-time constraints are an intrinsic part of the
application; i.e. that timing is part of the algorithm rather than something to resolve "'later".
As a result, real-time statements are integral to the language, and allow the programmer to
express the entire algorithm directly and in one place.

Real-time statements isolate the programmer from operating system details in the same
way that aritl_anetic expressions isolate the programmer from details of machine instructions
and data formats. A standard syntax for real-time operating system interactions greatly en-
hances the portability of application programs. In particular, it allows flight programs to be
simulated on ground-based computers; since the timing interactions are expressed in HAL/S,
re-compiling is sufficient to translate the entire algorithm.

The mechanisms for communication among real-time processes were described in
Chapter Eleven; tiffs chapter will discuss the set of HAL/S statements which control the
initiation, termination and synchronization of processes. These statemen'_', are all execu-
table; each implementation includes some technique outside of the HAL/E language for
specifying one or more initial processes which can then use the real-time statements to
create and control additional processes.

12.1 THE SCHEDULE STATEMENT

a" _ The fillure on the next page shows the use of SCHEDULE statements to create new
,/ ,r , processes.As the syntax implies, these statements create cyclic processeswhich will receive

control from the operating system at the specified intervals. The intervals may be specified
by any arithmetic expression in the REPEAT EVERY clause; the units are implementation
dependent but generally these values are expressed in seconds. In any case, the units of time
values throughout any particular implementation will be consistent. Seconds will be
assumed in the rest of this chapter. Hence, the three processes scheduled by STARTUP
would repeat at the rates of once, six times, and twenty times per second.

.t"

qf
¢

,J

1980004512-216

/

12-2 Real-Time Statements

fl STARTUP:
I'1 FRC'/,PAM;
H GUZOa."¢I[:
I'I TASK

e ...

M CLOSE GUII)AteCE:
n HAVTGATZOtI:
tl TASK|

C .o.

II CLOSE HAVZGATZON|
fl com'l_OL:
M TASK;

¢ ...

I'1 CLOSE CONTROL;
I't SCHEOULI[NAVIGATION PffZOfflTY|60), aEPEAT EVIllY !.0;
I1 SCHIOULE GUIDANCE F_IORITYI70), REPEAT EVERY I / 6l
M SCHEOULE COKI_OL PRIO_ITV(60), RIPEAT EVERY I / I0|

• n CLOSE STAaTUP;

HAL/S does not impose any restrictions on the periods of cyclic processes created in
this way; however, it may not be practical to provide complete generality in a flight oper-
ating system. Simplifications such as rounding all time value_, to the nearest millisecond are

to be expected in flight systems: The appropriate HALLS User's Manual and any operating
system documentation should be consulted. It has become common practice, however, to
develop and test HAL/$ software on large ground-based computers (host computers) before ..
executing on flight (target) equipment. These ground.based implementations generally do
not impose any restrictions on real-time statements other than those described in the Lan- ':
guageSpecification, thus allowing a large range of operating system types to be simulated.
In this chapter, a complete implementation will be assumed, but the reader should not ex-
pect to find all of these capabilities in any particular flight operating system.

Suppose that the averqe execution time of the GUIDANCE, NAVIGATION and
CONTROL tasks are as shown in the table below.

a

,_ _, Task Rate Averalp Time Total Time

GUIDANCE 6/see. 50 ms .3 sec.

NAVIGATION I/see. I00ms .Isec.
: CONTROL 20/nec. 25ms .S sec. '_

Total Time" ,9 sec. _.

te

r

1980004512-217

i

_ T_t $CIIEDU£EStattmtnt 12.3

S/nce these tasks tosether occupy only 9/10 of a second per second, it is clear thet the speci-
fied rates art attainable. However, it would be extrtreel,/difficult to implement this struc-
ture u_nS CALLend DOCASEstatements u was done in Chepter Seven. The difficulty can
be seen by examinins a Ome-llne of O_N tuks' execution:

:!

ooooooooooooooooooi oo
l
?

_l The trouble is that no matter how the initiationof theseprocessesis phased,I time will
occur when more than one processis oue to execute, If only CALLstatements were used, it
would be necessary to either tolerate a substantialjitter in the execution frequency of each
task, or to breakeachtaskinto manysmallprocedureswhichwouldbe ca!ledin svery com-

plexsequence.

By the use of SCHEDULE statements, as shown in the example STARTUP. the timinj
COn4_letScan L'. automstic4d]yresolved.Aswe haveeireadystated,theoperatl_ systemcan

m-"ocAte the central_r at anypointm theexecutionof a _eu, subjectto the_
strictions resuJtin8from update blocks end exchnJve _t_geduru. if two procesus ore due
sb_'uftameomly, the h4ghest priority process recedes control. The purpose of the pnoH_ _:
c¼I in _ _HEDULE s_t_nt is to _ow the qm_m to resole con_c_nI _q_ts
for the _u_w_e resources, in Useelple. GUIDANCEbecomes ready whge CONTROL
it execu_ about h_f _e t_e. Since |U pflofl_ is le_ t_n t_t of CONTROL.

GUIDANCE is st_d unt" CONTROL _mplet_. Every t_e G_DA_E e_cutes.
CONTROL comes due _ Use m_db; bexe _. t_ pflo_t_ _ern _e _t_n, m_
GUIDANCE is _ (interruptS) wh_ CONTROL nu_. _n CONTROL completes,
GUIDANCEnlmes at Use_t of inten_k_. As k_ u tbe _ _ p_ec_o_ fes-

of C_pteg Ehrven_ used, this syttem _ has no _psct on the _d_ of either I
_" ¢ task, dthoulh some overhead is asmoc_tedwith the processswlp.

Since CONTROLcan intemnpt either of the other two p_, the Jitter in its period
of executionwill he very mudl.Aside from the wstem overheadinvolved JnJwsppinj proc-
cues, delJy_ in the execution of CONTROL can m_t only from sweit_ the re_ of |

"_ locked data or enexclusiveprocedurebyoneof the other_ GUIDANCEc_ he de.
,y by the unsv_ of I _ I or by the executionofCONTROL;

" NAVIGATION c,_ be intm'mptad by either of the others. Com_quent_, NAVIGATION
will i_meily runin _e_yshort buretsspreadout through the entire ascond.

. jk

"19800045"12-2"18

12-,I ,%mi.TIm¢StetcmenrJ

The example actually ¢onsmtsof four procemes: the three tasksand the STARTUP pro-
Ipram.The priority and other ch_u'actet_.sticsof STARTUP ate determined externaily, either
throul_ a SCHEDULE staf,'ment in another compilation unit or by default durin8 system
startup. Usually a HAL/S real-time executive will start a tingle prolpL'n as a non-cyclic,
process; this prolKmn must then schedule all other prolltams and tasks. The priority of the
STARTUP proffram affects the sequence in which the tasks are initiated. If STARTUP i_ at
priority fifty, when it scheduJes NAV|GATION at priority sixty. NAVIGATION becomes
the hiShebt priority ready procc,ss and therefore receives control immediately. STARTUP
is stalkd until NAVIGATION relinquishes the procemor. This happens when NAVIGAT'ON
reaches its CLOSE statement; since it was scl',eduJedto run only once per second,it entre
an inter-c:ycle wait and ceases to be a ready process. This makes STARTUP qgaJn the hillhest
priority ready process, so it receives control and executes the s,_cond SCHEDULE statement.
The same situation is repeated with GUIDANCE and CONTROL.

The effect of these SCHEDULE statements, then, seems very much like a set of CALL
statements, One major difference is that the GUIDANCI.:. NAVIGATION and CONTROL

• tasks will continue to execute at the specifk.d rotes after STARTUP reaches its CLOSE
statement, even thoulgh STARTUP executes only once. Furthermore. eack HALLS real

time process ha: its own error envy>amens. Any error handlers in STARTUP have no effect
whatsoever on the action taken if an error occurs in one of the tasks. Finally, the situation
would be different if STARTUP had a higlter priority.

With STARTUP at priority fifty, the followinl; time-line dcgrihes the first few cycles:

I] 0 8
IMVIGMION

13DE]E)

a P

• ,

That is, N•viltation and Guidam,'e each comptete • full ex_ution uninterrupted before :he

higher I_ty task(s) are scheduled. This may well simplify the system. If STARTUP was at
prkxtty one hundred, however, the tim_line would be _'ompletely different:

1980004512-219

[he .5(7tEDUI.E Statement 12-._

s,;,_Tur J r"l

In this tax. STARTUP executr_ :11 Zhrrc SCHEDULE statements before any other process

recewes control; hence,, the fl,t cycle I_ not substantially different from any other.

When STARTUP reaches ils CLOSE statement, it cnte, the wail stale. This is similar to

an inler-cy_le w_it. but dc¢$ not result from tbmin/I considerations. A prolztam remains

I ,_,'tzv¢ a5 long as any of its tasks are active, due to the possibility of shared data and '_tdlty

routin_ at the pro|ram level. It is said to be "waiting for dependent proce-._,z"; the mem-

ory allocated to the prog_m c_,nnot be n_lea_d. If the risks are sub_qucntly cancelled (i.e.

cease to cycle), the program completes as well; it is neither ready not wsitinll, but simply

don_ and fo_otten. In the tetminoiosy of the Lanllualp_ Specification, it is no ionl_r "in the

pro_¢_ qucue_".

The minimum form of CheSCHEDULEstatement contains only a pro_ess name and a
priority, as In:

SCHEDULi_.._TARTUP PRIORITY(lOOk

If no repetition option i_ sl_¢if'_d, the prollram or t_k executes only once. The REPEAT

EVERY _pecif_s cyclic _x_ulion with a fixed interval between the I_llinninlP of the

eyelet. The REPEAT AFTER option b very similar, but the fixed interval is hclw_en the

end of one CycJe and the stsrt of the next, u illustrated in this flllm_.

_- _ I _ OT'--Ilu4_-'- OT_DT_ DT-iI_I

.' , I'-I O 13 O
I _:
I
I
I I,e--Ot--..l_ 14.-0_--.W4 I._-Ot-.-.i_ I,e--Ot_
I

,,. I--I 0 D O
• |

r

;4

b

1980004512-220

12.6Rral.T_m¢S,arrmtn/# *"

The REPEATAFTER form specifiesthe lenllthof the inter-cyclepcrind of waitinll.|f RE- /.
PEAT AFTER is speciNed,the averallCtime betweenexecutionsis the sumof DT and the
averalleexecutionlimewhereasit issimplyDT in the _aseo£REPEATEVERY.Theprimary

_ advantalgeof the REPEATAFTER form is that8 cycleoverlaperrorcannotoccur.If proc-
e_ A in the previousexampleexecutesmorethanDT wcondsin a pmlicul_ cycle,it wtli
comedueapin beforeit completes.Thisresultsin arunttme_,norfor whichno ONERROR
handler can be written. Process B abovecarsexecute lot any lertlth oF lime without an ovey-
lap, sincethe startof the next cycleb delayeduntilDT afterthe previouscyclecompletes.

The primarydisadvantaleof the REPEAT AFTER option is that it may m_skesystem :
verificationmoredifficult. Useof thisoption tendsto makethe time-lin_of theentiresys-
tem um'epeatable,if the outputsof a controlsystemdependon the sequenceinwhichvari-
ousprocessesare executed,a hule numberof runsmayberequiredto showthatno unac-
ceptabletransients are introduced by timinll fluctuationL On the other hand, if REPEAT
AFTER isusedforlesscritical processes,theentitlesystemmay respondbetterto ow""_ed
conditions.

If REPEATisspecifiedwithouteitherAFTER or EVERY and atime:

SCHEDULE X PRiORITY(17), REPEAT;

the proceu is immed_ltelyresta_edat the end of ew:.hcycle. This is equivalentto "',RE-
PEAT AFTER 0;". This option is Iffn_qrallyused for processes intended to use "left over"
time for seif.tasS,etc., andfor _ which issueWAIT statemenlxUseof the simple
REPEAT optk_nis not substantJaqvdifferentfrom ¢odJn8an inf'mite!ooparound the task
bodyand schedulJn8it asa "one4not". The effectof the CANCELstatementis different,
rnd undersomeimplemenlat_m_errornPcove_ymaydiffer aswell.

The SCHEDULEstatementhaaseveralother opliom in additionto the three REPEAT
fonm_Theseu_tiom aUowthe startof a pcocm to he delayeduntil • 0_ecKiccondi_innis
met, andallow c•ln_'eilMJemcriteria to be q_'ifled at the thne• pmcassisscheduled.Both

alld end col_Jliona and • .'epetJtJoflopliofl maybeusedini sinJJeSCHEDULEstate-
merit,aJshownhelow. _*

,
nnnt cu)eexJ P _" s.,, ms0*s_:. R_av cvwv .osums_eu_sm • seo_

4

f

p

1980004512-221

i

The SCItEDULl" Statement 12-7

:]
This statement will cause the program or task P to be initiated with priority 49 at 5.4 _t '_

seconds after the execution of the SCHEDULE statement. Subsequently, it will be ex-
ecuted* every .03 seconds for 94.6 seconds and then be terminated. :_

The IN and UNTIL options allow any arithmetic expression. This expression is a time _
value in the same units as in the repeat options, generally seconds. The IN option requires an _ ,_
interval of time whereas UNTIL expects an ahsolute time; this is the same as the normal
English usage of these words. Since the RUNTIME function returns the current value of the
system clock, "iN 5.4" is equivalent to "AT RUNTIME+5.4", a form which is also accept-

able to the compiler. i

All of the arithmetic expressions in a SCHEDULE statement arc evaluated only once. I
when the statement itself is executed. Subsequent changes to the variables used in these ex- _

pressions do not affect the scheduled process.

The various scheduling options must be specified in the correct _equence. and only one ! _'

of a given type is allowed in a single statement. The sequence of phrases in a SCHEDULE _,
statement is: ; :

a

I) SCHEDULE and a process name

2) An optional begin condition: IN, AT orON,

3) A priority,

4) An optional REPEAT clause,

5) An optional end condition: UNTIL or WHILE.

The ON and WHILE conditions reference event variables, which will be described in Section
12.2. First a few special cases of the time options need mention.

Normally, the IN or AT time used in a schedule statement is in the future. If the _peci- ,i
fled time has already passed, the process is readied immediately. There is one exception: if
AT is used with the REPEAT EVERY option and the time has already passed, phased sched
uling is performed. The first execution of the process occurs at the time given by the sum of
the "AT" time and the period IREPEAT EVERY delta) of the process. This allows a "syn-

chronous" real-time structure, winch is further described ih the Language Specification.
Phased scheduling _end_ to minimize the number of processes that are ready at any one

• if time. i

• I" Normally, the UNTIL time specified is in the future, if it is already passed, then the _ "

SCHEDULE statement has no effect. Th, UNTIL clause can never stop a process in mid- !_
execution. If the UNTIL time attires while the proce,_s is executing, it is allowed to finish its _

current cycle. The UNTIL and WHILE clauses can only stop a process before its first execu- __
tion or during an inter-cycle wait. When the end condition specified in a SCHEDULE state-

: ment is _tisfied, the process is CANCELled rather than TERMINATEd, a distinction which

will be explained in Section 12.3. i
4

•Assumingthlt itsprlodtyissufficientto obtainneceulryresources.

.IY i

I

,J

1980004512-222

+;+, o,

Exerci_

I .+.I A Draw a thne-lin¢ for one ,_,¢ond'sexcctltzon of the pr_¢es,_s _'heduled I_,low. As-
stone that ca,'lt prt_ce_._executes for ,_0 ms pcr cycle.

SCIII.'I)LILI,: ,,%PRIORII'Y(IOO). RFPFAI" I:VFRY I"5, +

St'IIFI)ULF B PRIORITYtgq), REPFAF ;,VERY I]3; +&

SCI&'I)ULF (' l'RIORll'Ytgt_), RtUPFAF I;VI+:RY I ++`

+
12,111 Draw a liltlL'-l+lle l\+r tile prt_.'e+es i11exel_.'ise I .+.IA. hu! wlth all o¢¢tlrrcnces of

I+VFRY ¢h+lnl,_'dto AH'FR.

,+-+
I ".1(" Given two tusks, X and Y. I_oth of whi¢ll t.m one half ,'_¢ond per iteration, _Pllc)

schednlc slatt'n)cnts that will run X ¢olltinUonsly for two seconds, then alternate X

4 and Y for two se¢ol.ds, and thc,1 run Y half tile limp for two morc'._¢oflds. U_ only
two schedule statenlenL%

+
'I ')I... EVENT VARIABLES

I'hc three l'orlns of bcRi+z-conditiol;in _1S(.'III:I)LII I: statenwnt are:

IN ";irlthnlelic CXl+resSiOll",

A I' ""lrtlhlllell¢ exlwrs,sion'', +ll|d

()N "evcnl CXl+re,_ion".

"]'wo Of lhe._ forllls descrlhe a begm-.'ondition in terms ol little', tile third l'onn, ON, Irls
schedulmlZ defend on conditions or t_:¢urrences which do not h_p_'n at a pwdelemlincd
time, Suppo+. for example, that Ihe GUIDANCE, NAVIGATION m)d (+'ONFROL tasks of
the previous cxanlplc are used durintl launch of a spacccral'l, but when orbit is achieved,
(;LIIDAN(E and CONTROL are to be replaced with annlhcr task, FRI'L:FALL, If the time .
at which orbit will he reached is known in advance, this can be done with the AT anti ',

L1NTIL clauses already pre_nted. Otherwise, it is appropriate to declare an event variahh.

•• P to ¢orrespt_ndto thisoccuren_ asin: +

we
I)I'CLARF ORBIT I.VI+N]';

Then th_ desired transition can be specified in the SCIIEI)ULE statements _s ,,Eown i11the
next example, Whenan event variable is sisnalled, as in:

SIGNAL ORBIT;,

all m'th'¢ ¢lWet e,x'prrsskms which rel'_renc_ that event am evaluated, II) thzsca_ three active
ewnt expressions reference ORBIT When theSIGNAL .staU.'lllefllCatlStSsORBI I tol_<'¢ome

• TRUE, these expressions are all ,satisfied: GUIDANCE and ('ON'] ROL are cancelled via the
UNTIL clauses, and FREEFALL is started via the ON clause,

#, An active event expression is a ht_tlean ¢omhination of event variables used h_ a real-
time statement which has not yet been ,,mtlsfied, Event expressions are formed in the ,,mat"

+,e
++

.+

1980004512-223

i
Event gardables 12-9 i

way as boolean expressions using the AND. OR, and NOT operators. However, all rariables

in an ea,ent expression must be events. In the simplest case, an event expression consists of a
single event variable; e.g. "'ORBIT" in the SCHEDULE statements above. A boolean cora- l

bination of event variables is only considered an event expression when it is used in one of
the real-time statements. An active event expression is one that has never evaluated to
TRUE since the containing real-time statement was executed. Once ORBIT is signalled, the _

event expressions in the SCHEDULE statements are no longer a,tive. Signalling ORBIT !

e.gain will have no effect unless additional real-time statements which reference it are exe- ,
¢

cured, i

M STARTUP :
M I:'ROGRAM;
ti 0ECLARE OI_BZT EVENT;
H GUIOAt_¢" :
H TASg ;

C -,,

I1 CLOSE GUZDAHCE;
n HAVZGATZOH:

II TA_gi

C ...

n CLOSE NAV]'G_TZOH;
I'I Co_nLpOL:
11 TASg ;

C ..°

n CLOSE C_4TROL;
I1 FREEFALL:
n TASK;

0 .°.

I1 (_LOSE FREEFALL;
I1 SCHEDULE NAVZGATIOH PRZORITT(60)p REPEAT EVERY 1.0;
fl SCHEOULE GUZD,'_CE I_ZL"qZT¥(70), REPEAT EVERY I / 6 UH'TEL O'A'I_ET;
II SCHEDULE CONTROL PRZOqETY(80), REPEAT EVERY I / J'O UNTIL ORBET;
n SCHEDULE FREEFALL OH OR3TT PRZOR;TY(?S), REPEAl EVERY I / 10;
11 CLOSE STARTUP ;

A4' ,

When an event expression is u_d in the UNTIL or WHILE clause of a SCHEDULE state-
ment, it can causecancellationof a process.Whenused in the ON clauseof aSCHEDULE
statementor in a WAITstatement,it can causea processto bereadiedorstalled.Eventex-

' pressio,s are used only in SCHEDULE and WAIT statements, and always serve as a condi-
tion underwhichthestate of someprocessis to be changed,

' . Thereare three typesof eventvariables:latchedand unlatche_ declaredevents,and
processevents. All events haveonly two states,ON and OFF; the distinctionbetween

,f

¢,

.J

1980004512-224

t

12.10 R¢oI.TimeStotement$

latched and unlatched events is that an unlatched event does not retain its state. ORBIT is f

an unlatched event since the LATCHED keyword was not specified in its declaration. It is
initially OFF or FALSE. When the SIGNAL statement is executed it becomes momentarily
TRUE, just long enough for all active event expressions which reference it to be evaluated.
SIGNAl is the only statement which c:n affect the value of an unlatched event. /_

As stated above, an event expression can be a boolean combination of event variables. .;;
Since an unlatched event is only true dunng the execution of a SIGNAL statement, and
only one event can be sigJ._lled at a time. the logical conjunction (A & B) of two unlatched

_ events will never be satisfied. This i_ one reason for using LATCHED events, as illustrated
below:

/,

. ._
N P:
N PI_0G_AN; £

N O[CLARE ORBIT [VENT LATCHED IflITIAL(FALS[);
I1 OECLtl_E ElaINE OFF EVENT UTCHEO INITZAL(FALSE);

a H I_I][nAKCE:
N TA_;
I1 CLOSE ;

1tlI CLOSESCHEOULEp;fU:[OkqCE PRIO_IIY(?01, REPEAT EVERY It / 6 UNTIL ORBIT kqO ENGINE OFF; _

Here, GUIDANCE will continue to cycle until both ORBIT and ENGINE_OFF are true at
the same time. This can happen in several ways. The sequence:

SET ORBIT;

SET ENGINE_OFF;

will cause GUIDANCE to be cancelled. When a latched event variable is SET it remains true

until it is RESET. A latched event may also be SIGNALled. In this case, the state of the

event is momentarily lnw.,ed for the duration of the SIGNAL statement, just as in an un-
latched event. Thus,

_" t SET ORBIT; _iSIGNAL ENGINE OFF:

will also cause GUIDANCE to be cancelled, as will:

.. SET ENGINE OFF;
_" SIGNAL ORBIT;

However, if one event is tim silgnalled and then the other set, there will be no time at which
both ar_ true, and GUIDANCE will continue. The advantages of using unlatched events will
become clearer when the WAIT statement is introduced.

1980004512-225

Event Va.qbles 12-11

The third type of event is a process event. These events are not declared by the program-
mer, but automatically defined to correspond to the state of each program or task. The __
process event has the same name as the program or task, and is true from the time the proc-

"_ ess is scheduled until it completes its last cycle. The process event of a cyc!ic process re- _
mains true during the rater.cycle wait, and during any other stall or wait state. Process
event_ cam,ot be SET, RESET or SIGNALle_' they simply .'effect the state of the process of *_
the same name.

Process events can be used to solve a problem in the GUIDANCE and CONTROL to
FREEFALL transition of the p_vious example. Since a process cancelled _ia the UNTIL

: clause of its SCHEDULE statement is allowed to finish its current cycle, FREEFALL will
start before the other tasks have finished if they are active at the time the event expression
becomes true. This difficulty is corrected in the followin_ code.

J STARTUP:
I1 PR_;
I1 O[CLARE ORBIT EVENT LATCHED;
/1 GUIOA_E:
I1 TA_iK;

C ...

H CLOSE GUZDANCE;
/1 NAVI'GATZO_:
I1 TASK;

C .,.

I1 CLOSE NAVI'GATI'ON;
n CONTROL:
n TASK;

C o..

/1 CLOSE C_OL;
/1 FR[EFALL:
/1 TASK;

C ...

I1 CLOSE FREEFALL;
" If H SCHEDULE NAVZGATEQN PRECHZTYI60), REPEAT EVERY 1.0; _"

• /1 SCHI[OULE 6UZOANCE I:_IORZTY(70), REPEAT EVERY | / 6 UNTZL ORBZ1;
,_ _" a H SCH[OULE CC,q_OL PRZOaZTY(SO), REPEAT EVERY I / ZO UNTZL O_RZT;

I1 RCHEOULI[FREEFALL _ (ORBIT & HOT GUIDANCE & HOT CONTROL) FRZORZTYI?SIu REPEAT EVERY 1 ,/ 10; :
II CLOSE STARTUP;

/_ The FREEFALL process is initiated when ORBIT is true and both other tasks have corn- [
pleted their last cycles. In this case, ORBIT must be a latched event and it should be SET
rather than SIGNALled.

The effect of SET, RESET and SIGNAL on latched and unlatched events is summarized
in the table on the next page. As shown SET and RESET leave a latched event in the TRUE
or FALSE states, respectively. When a latched event is SIGNALLed, its state is momentarily
inverted. Unlatched events are always FALSE, except when SIGNAL makes them women-

._ tartly TRUE.

it J

" 1
L- -

1980004512-226

12.12 Real-Time Statements

Set Reset Sillmd

Take all event actions

I_ unlatched event illegal illegal depet.ding on TRUE
state of <event var>

I. Set event state Take all event actions
old

to TRUE depending on TRUEvalue

latched is 2. Take all event no action state of <event vat>
event FALSE actions depending

on TRUE state of
<event vat>

I. Set event state Take all event actions
1 H

old
to FALSE depending on FALSEvalue
2. Take all event state of <event var>latched is no action

a event TRUE actions depending
on FALSE state
of <event vat>

Events can also be tested in non-real-time statements; e.g

IF ORBIT THEN DO;

Booleans and events may be freely mixed in boolean expressions. However, when used in
any statement other than SCHEDULE or WAIT, an unlatched event is always false.

The SCHEDULE statements allow begin and end conditions to be specified in terms of
either time or event expressions, but the repetition optton can only be specified in terms of
a constant interval of time. The WAIT statement allows a p,ece of code to execute at irregu.
lar intervals.

Suppose a process is required to execute whenever ORBIT is false and ENGINE_OFF is
true. The schedule statement can be used to initiate a process the _rst time this combination

a" js is trite, as in:
a¢

SCHEDULE RE IGNITE ON NOT ORBIT
AND ENGINE_OFF PRIORITY(999);

A convenient means of allowing this process to execute every time the event expression is
true is shown on the next pue.

r

r

1980004512-227

Event VariJbiet 12.13

M P:
It PROGRAM;

r H DECLARE EVENT,
M Eh'GZHE.OFF *
n OPBZT LATCHED;

I1 SCHEDULE RE ZGHZTE F;_ZCRZTY(999);
M RE XGNZTE :

" 1t TASK ;
M O0 klHlrLE TRUE;
71 _AZT FOR Et,_ZNI[_OFF & "ORBIT;

c
c
c

fl EHO;
It CLOSERE_ZGHZTE;
H CLOSEP;

|
When the WAIT statement is executed, if the event expression is true, execution continues
at the next statement. If the event expression is false when the WAIT statement is executed, l4 the process is stalled until the expression becomes true as a result of e_'nt variable changes
by other processes. If the event expression in a WAIT statement is not immediately satisfied,
it is put into the pool of active event expressions; the process containing the WAIT state-
ment is stalled (taken out of the READY state) and the highest priority ready process re-
ceives control. The process issuing the WAIT can only continue when the specified condi-
tion is satisfied.

Suppose that ORBIT and ENGINE OFF are both latched events, if they are SET and
RESET from some process other than RE_iGNITE, it is possible that RE_IGNITE will exe-
cute too many times. Since it is of such a high priority, RE_iGNITE may finish processing
and re-execute the WAIT statement before the other process has a chance to RESET
ENGINE_OFF. In fact, if RE_iGNITE is the highest priority process and contains no other ._
WAIT statement, it will continue to loop to the exclusion of every other process. If the RE-
SET statement can be pl- "in RE_IGNITE right after the WAIT statement the problem is
solved, but the situatiol .id be avoided altogether by using a SIGNAL statement instead
of SET. Since SIGNAL leaves an event in the true state just long enough for all active event
expressions to be evaluated, there is no possibility that RE IGNITE will re-issue the WAIT
statement while the event is still true. The SIGNAL statement is generally used when an

event is expected to change its state repeatedly, as there is no need to RESET* it in prepara-
tion for the next use. Note, however, that if the process which is to wait for the event has

j."

•' • , not already executed its WAIT statement, the SIGNAL has no effect.

*Signalmomentarily/nvertt the state of a latched event. If a proceu waits fog the false state, SIGNAL
avoids the need to SET the event before the next cycle.

L

1980004512-228

i

?

12.14 Real-Time Statements

Consider the two communicating processes below:
i

I1 PROGRAM;

N DECLARE DO_SONETHII_ [VEHT; /
I1 DECLARE DO_E EVENT LATCHED ZHETZAL(OFF)| '-
I'1 SCHEDULE T PRZDRTTY(SO); _'

I't SIC, NJ.L DO..SOMETHZN_;
It kgAIT FOR DOHE; "_
H T:
H TASK ;

M HAZY FOR DO SOtSETHZNG;
II SET OOt;E;
N CLOSET; ;_
It CLOSE P;

a

In this example, if the priority of P is greater than 50, neither processwill ever complete. It"
the priority of P is less than 50, T will execute its WAIT statement before DO_SOME- ,
THING is signalled, and both processes will complete. If P is the higher priority process, it

must pause before signalling DOSOMETHING to give T a chance to execute its WAIT _.
statement. This could be done by adding:

//

WAIT .I :

just before the SIGNAL statement.

Exercises

! 2.2A Why does the SCHEDULE statement have both AT and ON clauses?

A

e,

4

]9800045]2-229

Event Variables12-1._

12.2B In the programsegment below, at which of the points A-D is the event expressionQ
active?

DECLARE Q EVENT LATCHED INITIAL(OFF);

A:

SCHEDULE TASKI ON Q PRIORITYq57);

a

B:

SIGNAL Q;

C:

SE_Q;

IN;

It

12.2C Let X be a latched event which is Initially OFF. How is SIGNAL X; different from i
the sequence SETX; RESETX;?

12.2D Re-do problem 12.1C with the two tramitiom bated on events: assume that un-
latched events, TRANI and TRAN2 ate tillnalled at _ppmpflate times by another

' pgoc_lt.

r

? .*

1980004512-230

12-16 Real-Time Stotemenls

] 2.2E Is a latched or unlatched event more appropriate in each of the following situations:

a) As the single operand of'an ON clause.

b) As part of a complex event expression.

cl In a boolean expression.

d) in the RESET statement.

e) In a WAlT statement inside a loop.

12.2F Write code that will cause the state of one event variable, COMPL, to alway_ be the

inverse of another event, MASTER, which is set and reset by some other code. Do
not examine the state of MASTER more often than necessary

12.3 OTHER REAL-TIME STATEMENTS

The SCHEDULE statement _reates a process of some priority and possibly with _ome

repetition rate. Begin and end conditions can be specified in terms of either time or event
s variables. These event variables may be SET, RESET and SIGNALled by other processes.

The WAIT statement allows a process to voluntarily release control pending some future
condition. This condition, like those in the SCHEDULE statement, may be either a combin-
ation of event variables or the passage of tmle.

In addition to the time option of the WAIT statement, this section presents the CAN-
CEL and TERMINATE statements, which allow a process to discontinue it,ll or some

other process, and the UPDATE PRIORITY statement, which is used to modify the priority
of a process which has already been scheduled.

The WAIT statement has three forms:

WAIT [:OR "event expression";

WAIT "'delta time"; and

WAIT UNTIL "time";

The effect of the statement is the same in all cases: If the specified condition is already true,

execution continues, otherwise, the process is stalled until the condition becomes true.

j"

, I ' As in the SCHEDULE statement, the expressions "delta time" and "time" may be any
arithmetic expre_ion; both are in the same umts as time values in other real-time state-
ments. The two fi)rms dislinguish between a particular time. and an interval of time, which
is the same distinction as between the IN and AT options _f the SCHEDULE statement. A_
before,

: WAIT . I ;

_ is equivalent to:

WAIT UNTIL RUNTIME + .I;

| , _ , . =-

1980004512-231

!
Other Real.Time Statements 12.17

These forms of the WAIT statement are generally used in "sequencinlg" applications, for in-
stance to fire a vehicl_ control jet for a It)yen duration or to wait between commands to
some slow movinlg mechanical device. They are also useful in testinlg, to senerate a scenario

_< of simulated inputs as a function of time.

Note that the arithmetic expressions in the time-oriented WAIT statements are evaluated
only once, when the WAIT statement is executed. The expression "RUNTIME + .1" does
not keep slidinlg into the future, but is converted to a scalar value when the WAIT statement
is executed, it is only event expressions that are repeatedly evaluated by the system.

A further example of the WAIT statement, is shown below. Here, the acceleration
of a vehicle is con,rolled to get from HEqE to THERE in minimum time by accelerat-
ing halfway and deaccelerating halfway. Steet_'_ll is ignored, as is any initial velocity.

M P:

M lq_aJUl;

rl DECLAmI[Vl[CTra,
• n)¢EQE, _W|;

n O[¢LAWI[I¢Ag THRUST COHSTLqTtlZ]4I,
M V|H_MASS ¢eNST/tNTI S6?a) i
n DECL_| ICA I_lt,
n A, a* T!
M _I_¢L_| IIOOL|J_I,

I1 ACC.al0, 0[¢¢.¢11D;
H A • t'uut TIClI_T / VEH._$S|
| .

fl S • ABVALIHI[eI[- THEHE) / Z|
H T • S_TIZ A S)|
|
M).CO Crl0 • 0N_
M ULXT T;
I[
n ACI: DID • 0FP;
I[

M D|C¢.CN0 s I_!
H usZT T_

E
fl OlCl_ 0'I0 • OlrFl
H CLOSE P!

In this example, "WAIT T;" introduces a delay ofT seconds between settinl ACC_CMD
t on, and back off.

J

The WAIT statement temporarily deactivates a process; a process can alto be perma-
nently deactivated. A non-cyclic process (no REPEAT clause in the SCHEDULE statement)
terminates by executtnl its CLOSE statement, by caualnll a fatal mntime error, or as • result
of the TERMINATE statement. A cyclic process ¢•n cease executinl is a result of the
WHILE or UNTIL clause used when it was scheduled, the occurrence of• fatal en'or, or the
execution of a CANCEL or TERMINATE statement.

The CANCEL and TERMINATE statements are similar in form. each conalttinl of a

keywonJ (CANCEL or TERMINATE) followed by a list of procm names, for example:

CANCEL GUIDANCE:
TERMINATE STARTUP;

.t" CANCEL NAVIGATION. CONTROL. P. T;

_r

+ +_+;++'+ti _ + + + : +* ++ + *+ " ++ - - +"+-. +,

1980004512-232

i
lu

12.1# Rtel.Ttme SldltMtnll l

1
The TERMINATE statement causes immediate, abrupt cessation of the listed proceste¢
Since it may stop a process at any point in its execution, its use is strunlgly discouralled. The
HAL/S LanlNalle Specification imposes additional rules on the use of TERMINATE. The

•. only useof TERMINATE which is Igenerallyconsidered acceptable is:

TERMINATE;

When no Ibt of processes is supplied. RIf-termination is impli J. This form of the TERMI-
NATE •tatement can _erve as a "super return" statement at the PROGRAM or TASK level.
Since the process "kr, ows" its own state, this form is relatively safe. When other processes
are terminated, it is important to consider all pos_ble points at which they m_ght he exe-
cutinlg to ensure safety,

The CANCEL statement allows an ogdedy shut-down of the specified processes. Like
the WHILE and UNTIL clames c¢ the SCHEDULE statement. CANCI_'L can only' stop u

proc.ess bet'ore its flr_t cycle or during the Inter.cycle wait. This allows proc_s to be
_1 stopped without the risk of leavin|pJrtMlly updated results.

Since a cat,celled proc¢.,Jris agowed to finish its current cycle, the CANCEL statement
may not have immediate effect. Process events can be used to key on the completion of the
last cycle before schedulinl[a "replacement" process, as shown below:

CANCEL X. Y. Z;
WAIT FOR -IX & -IY & -1Z;

SCHEDULE XYZ NEW PRIORITY(IO). REPEAT;

Ex_

12JA Sunound the statement "'WRITE(b) RUN'TIME;" with other stat_,mentsso thet the

values 1/10, I/8, I/6, I/4, I/2, and I will be sent to channel 6. Use no other I/O
statement_ Do not wony about numefl_ accuracy.

a 12.3B Given:

P: PROGRAM;
DO WHILE TRUE;

/ *somethJnlO/
END;

CLOSE;

SCHEDULE P PRIORITY(100);

What doer "CANCEL P;" do" Ho. _xdd this be doee?

ii
i

t
i

h

1980004512-233

/

. . _ __,.4. __ _ ._

1

Q OtherReal*TimeStal'mrntJ IJ./9 _ '_

Endof Chspterrroble_ i

Pa._ of the sl_cification of the fliJht software for the XYZ aircraft milht read as ,
follows:

Cltellory bte Functions _ .**

A R A input processin|
elevon commands
lelemrtry

P 1/2 g A rudder commands
jlutdance

C I/4 R A fliliht cooirol pins

D]/8 RA naviption display
updates

• The software functions are dWMed into four catesor_ as shown. T'ne cateltm7
A software is to be executed at the hil_est possiblerate cons•steal with the IhrOUllh-
put of the machine and Ihe toud wo_lood. The caleJory B software sha]l execute
one-half as frequently as catelory A; the rate of catejory C shall be half that of
catellOry B, and the rate of cJtesory D shall be one-half that of catelory C (i.e. one-
tilth therateofcatelmryA)."

I2A Implement the abo'- example via the real-time statements. Explain your choice
of priorities. Fix rate A at one-tenth,

12JJ Re-do the probkm under the orijinal "u fast aspmsible" Iroundrule.

#

1980004512-234

!

J.

!

BJ/Sr_nl# IJ-I !

13.0 SYSTEMPROGRAMMINGAIDS

The informationprc,,_,ntedin earlierchaptenappliesequallywell to any HAL/5 com-
piler. Exceptfor numericpreciadon,theexamplesshownwillproducethesameresultsunder
anycompleteimplen)entatJonof _heHAL/S bnlPn/e. Thistran.feryaSflJtywasone of :he
rna_r designifoals,_qthe lanlmal;e;It decremcsthe dependenceon the availal'_iityof fliJht
hardwareandcn¢ou:Jlesthe re-meof debul_edsoftware.

In order to providethb delpreeof machine-independence,the JanlpJageisolatestheuser
from detail_of the undedytn|hardware;e.|., thenumberof bitsina sca_Jr.Them'Jthmeti¢
data types.|flteler, Scalar,Vector andMatrixcorrespondto mathematicalal_ltractks_s.For
molt usen, the mal_pinlot"the_ data _/t_'s into the data formats supportedby a j_ven
computeris of no concern.The opemtJoftsthat can beperformedon thesedata typesare
definedin a waythatb completelyindependentof anycomputaraurchitecNre._' : charkter
strin|, boolean, and event t:.'pesalsoare defined abstractly; uNn do not nornn_ly need to
know how much memoryisc_upied by abook:anor whatcha_ter code(ASCii,EIk._I)IC, %
etc.) is usedintemaiJy.Sincetheselow level decisionsan_madein the compiler,HAL/S
codeis usua!_,machine-independent.

a WhJJ_mostftillhtcodeJmpknt_entsaJllO_thmsthat ire dennedin machine-Jndependont .:
mathematicalo¢Iol_aJ tefmJ,ImaJJportionsof manyprojectsarespecJNedin termsmuch
cloesrto thecomputerin use.Examplesof thislow k_rel_odearc fonnattin| sensordata,
hend_| interrdp,b, manaldnltread.tb_ clocks,comma_cJJfl|spe_JsIpurpuscav_4_nJJcs,etc.
Thesaf'unctiomMe tntrinsJcadJymKhJne-dependent;their aJjo_thmsaredeSil_C'din terms
of' hardwarer,apsbi_tJesandconcepts.Thus, there is JJlllechanceof shahn|this type of
aoflwsre I_wcen different projects.Transr_nrabil_lyof "systemsptl)llZ_,ms"is not a psac-
t|calload.liven thedivendtyof flJlhthardware.

E_enthou_ systemsoflwm islenend)ySl_cir_ to • liven computer,lheotheradvan.
tapsofh_ order)ani_qm .Sa _pf_y. Abo, the u_ ofa_ni_ bnlua_ foeboth_;,p_a-
tk_ andsystemprols,l_s lendstOwnrlJfy _terfaces,docume_ntatkmand_dnJA_.l'lel_e,
HAL/S provklesaomefeature for wr_t_,; systemsoftware,ht_ludin| the uaeof"p_flten
andIow-k'_l bit manJpu]afl_'t.

Them reaturer,_ mosl _'requ_ used_ ilonware the_ is _trJl_'ll}y flOn.lSlnsfer-
ruble.The re_t_ktionof bit mantpulaS/onto th, BIT data t)_. and _ ;omSndntson
IddlmV4_,III_.]re the pal_bly m4¢hine,4lep(_d_ntlystan_l proIHl_l from appl_a*' fl'_
code.

¢ ' I_).l lIT STIUNGS

A bit strinl b • mnn of binary diets. Eachd_Plo_ I_! behaveslt_ a book.an:the
fo_ms, BOOLEANandBIT(1), m comple.'e_"intarchanileald_.A bit slr_| o(I_ fmJr

.. canbemaknl v_:

DECL_.E FLAGS BIT(4);

WlClOIS,d_Macllpl'ltll_ll. _ _ qsJ_q;Medata typlllk _t slrbl_ may be sub,
tcripmito udKtslnldecompue_tsoepermJom.T_ tint.leflmm_,o_mo,t tisntN_ant_
of FLAGS IsdenoeedFLAGSS1._ lasttwobitswouJobemf_s_mcedm FLAGSS(2AT)).

- i

1980004512-235

13,2 Svstcra Pr_Pgrammmg Aids

"File catenation operator (J l) also applies, though bit strings differ from character strinss in

that bit strings are of fixed length. The AND, OR and NOT operators can be applied to

entire strings as well as their boolean components.

The le,_th of a bit :,,g nlust be less than an intplementation-dependcnt limit. This

limit generally .'quals the maximum number of bits that can be loaded into a general pur-

pose accumulator or register on the target machine.

Operations on _ngle bit components of a bit string are generally slower than correspond-

mg operations on BOOI.EANs or entire bit strings. The machine instructions to perform

these operations also tend to occupy more space.*

Because of the inefficiency of operating on a component of a bit string while leaving the

other bits alone, bit strings should not routinely be used to pack the individual booleans of a

program into a single word. One type of situation in which bit strings can be u._-'d effectively
is illustrated below.

l

H DECLAREI INTEGER;
H nECLAR[B EITtSI;
II BECLAREO00LEAN,
M C1, C_, C3, C4, CS, C6, C'/, CO;

C

H O0 I_ILE OH;
n DO fO;_ Z = I TO 100;
E
H IF B • HEX'O0* THEH
H 00;

r ...

H ENO;
H ELSE
I1 00;

C ...

H EHO;
H ll,_;
l
It IF Cl THEN

• EPa H B • ON;
S 1

_4

E
H IF C_ 'mEH
l
I1 B • ONÁ
s

c
c
¢

"This il beca,.,e mint memory units age det/sned to transfer many bill (a byte or word) to or from the t?U

in one operation, Modifying • tlnitle bit Benertlly requires the ute of Ioilical or thiftlnll tnitructlonl to
pgeterve the Itate of tdjtcent bits.

• ,if'

1980004512-236

In this code, eight booleans are packed in a bit string called B. This makes the statements,
* B$1=ON, B$2=ON, etc., le_ efficient than references to the individual booleans, CI, C2,

etc, However, the statement:

IF O = HEX'00"THEN IX], _-

is much more effiLient than: :_

Ii: NOT (CI 1('2 1£3 1('4 1('5 IC6 IC7 I ('8_ THFN
iX);

Since this statement is executed much more frequently than tile individual assignment., the _-
savin_ from makin$ a simpler [eat move than offsets the cmt of the component assignments,
Thus, one application of bit strinp is to collect booleans for testing as a group.

The example above tests whether all eight bits are false. Other compound conditions can _"
be tested via the AND and OR operators. For instance, the Ibllowtng statement tests for the
odd-numbered bits equal to zero:

,1" IP

i ¢ IF (B & BIN'IOIOIOIOI0') - HEX'00' 'tHEN

DO; ! ,:

The test that bits i and 3 are on and 2 and 5 are offcan be coded as: }

1 IF [B A BIN'III01000'),. BIN'IOI00000'THEN
DO;

i •IY I

l 4.,_ 1,11 _,.
r

,t

]9800045]2-2:37

I J,4 Svstrm I_*trammmt Aids

When boolcans art, collected in a bit string, it is still possible to give symbolic names to
individual components _.J REPLACE statements, as in:

REPL.A('E MEANINGFUL NAME BY "B$3"';

The only compari_ns that may be made betwcen bit strings are equality and non-
equality (_, and 7 =), As with arrays, the components are t'ompared in pairs; two bit strings
are equal if all pal_ nlatch, and unequal if any pair misntal "ches,If two bit strings of unequal
lengths are compared, the shortest is padded on the left with binary zeros before the
comparison,

This left padding also occurs prior to logical operations on hit strings of unequal lengths,

The following assignment statements all have the effect of setting B$6 to ON while leaving
the other bits alone,

, B6 ,, ON;

B = B t3R HEX'04';

_ B OR ilEX'4';

B - B OR BIN'I00";

Provided that the implementation dependent limit on bit siring lengths is not less than
twenty:

B - B OR HEX'O0004'

will also produce the _me results: a copy of B is padded to length twelve before it is ORed
with the HEX'O04', and the result is truncated at the left (the most significant four bits are
removed) before it is stored back into B,

Partitions of bit strings may be used in the same ways as entire sUinlts, e,8.:

• p

' _' IF I_ ,f OCT '17' THEN DO;
1"I"O4

The width of every bit partition must be known at compile-time. This means that in the
form IiStX AT Y), X must be an arithmetic expression composed solely of litends. ('ON-

; STANT_, RE?LACE names and the arithmetic operators, In the form B$(X TO Y), beta X
and Y must be computable at compile-time, Clie_m'ter strlnfs are the only ,taUt type for
which variable-width partition subecrtpting is allowed, ,_

" As we have stated, bit strings should not be routinely uled to pack booleans, The over- ;
head of referencing the boolean components generally mttweilll_ the _tvinlp of compressing

J

,k i

. i

1980004512-238

_l# Strings 13-5

them. In the first example, a bit stringwas appropriate _ince the entire string was referenced
more often that itscomponents.

It may also be appropriate to use bit strings to pack a table of booleans. Since there are
generally fewer HAi,/S statements which reference a table than entries in the table, it is
possible to save memory (at the expense of execution time) by compressing the table while

_ expanding each reference. For instance, in the table of 1000 booleans.

DECLARE INFO ARRAY(IO00) BOOLEAN;

.' each array element can be easily referenced as in:

IF INFO$ (I:) THEN DO;

but the table itself will occupy a lot of memory. Each boolean uses a whole byte. word, or
other addressable unit. To save some storage, this table could be packed as shown below:

4

It OECLAaE XNFO ARRAY(I * 1000 / 16) BgT(l(t);
n TES1 :
I1 FU;'_'CTION(X) BOOLEAN;
I1 OECL/tRE Z INTEGER;
II DECLAI_' XHTEGEg,
I1 t_O_O, 6ITNI_;
h k_OO = OXV(X, 16);
11 BX_ = Z - 16 k_]_O;
E
1t I_ETUliN THFO
$ t_Q_9.1: EXTFUI*I

Iq CLOSE TEST;
|

Now the value of entry number ! in the table can be referenced as TEST(i). This will be a
less efficient reference, but the table size has been greatly reduced.

This example assumes that the computer on which the code executes can address _
i" I; memory by the 16-bit unit. If not, this code could be very much less efficient. Thus, this
., • , example is not machine-independent. It would still compile and produce the correct res, lts .'

on. say, a 24-btt machine, but to achieve the same efficient use of memory would require

changing the four occurrences of 16 to 24. Thus, one reason why programs containing bit
,. strings tend to be less transferrable is that bit strings are sometimes used to control the ,

packing of information in "words" of memory.

_ The expression INFOSOVORD: BITNUM) contains both array and component sub-
scripts. As before, many combinations of simple and partition, component, array, and
structure, subscripts are allowed.

i

i

1980004512-239

13 6 SystemProg_mmmjrAids _

Oneof themostcommonusesof bitstringsinaerospaceapplicationsisfor formatting
senser and display data. For example, a sensormight produce a value in "packed decimal" _,
format: six four-blt fields, each containing a number from 0 to 9 (BIN'O000' to BIN'I001'),
packed in a 24-bit word. This could be converted to a simple integer by the following code:

n OECI.kRE _ BZT(241| /J
n DECLARE OUTPUT INTEGER INZT][ALtO); --
M DO FO_ Z = I TO Zl BY 4;
E

I1 OUTPUT • |0 OUTPUT * ZNTEGEIt(ZI4PUT); ;-
S 4AT1' **

M [NO|

s Herewe see that the INTEGERshapingfunctionwillaccepta bit stringas its operand.
Theeffect ismerelyto treatthe stringasa binarynumberratherthanaserie_of booleans.

Conversely,the BITfunctionallowsan integerto be treatedas a bit string.The length ,:
of the string returned is always equal to the implementation-dependent maximum bit
length. The code below assumes that the maximum is 16:

I1 OtCi._| 1'][NTFGER, ;_

fl B BZT(16);
II AEAO¢S)][;
[
n i • axTtz. /t
n IF n TH.N
$ 1

H MRZTEIa) *VALUE OF][HAS NI[GATIVE'i

n ZF n THEN
S II

II MWIrTEI6) *VALI.q[Qfr Z NAS I_O*|

This example produces correct results only on a l_bit 2's complement or _m-m_i_de
computer.Here themachinedependenceresultsfrom both the stringlengthof 16andthe
assumptionsmadeaboutthe interpretationof the firstandlastbitsof anINTEGER.

_ r

¢

.J,

1980004512-240

.......... _ -_* _, ._._ .,_....--_-. _-,._,_,_..--_,,._-z_*,_,_¢_ _,_,r_T_ ._=_,_¢_A_w_._._*¢_,_=_£_ *

| *

8it Strings 13.7

Conversions between bit and integer types use the BIT and INTEGER functions. The I 2

BIT function ",1 ais, accept a scalar argument, and the SCALAR function will accept a
bit argument. However, an intermediate conversion to integer occurs in scalar-to-bit and

,_ bit-to-scalar conversions. Thus, BIT(3.5) = BIN'0000000000000100', and SCALAR(BIN •

"0100'1 = 4.0. BIT of a scalar between zero and one-half generates a string of binary zeros, i _

The value returned by the BIT function is always of the maximum legal length for bit

strinss, as defined for the compiler version in use. This fact must be considered when the _ _
BIT function itself is subscripted. The last four bits of an inteFr, I, can be referenced as _

BITS(4 AT #--31 (il _ _,

but the expression _

BIT$(I TO 4) (I) _ '

may or may not select the first four bi_, ,'f |. If the number of bits in the representation of
an integer is less than the bit string length limit, the BIT function will left-pad the bit _

pattern of ! with binary zeros up to the limit. The subscript applied to a BIT function
selects bits from the maximum-length result of the conversion, rather than from the original "

operand, so BIT$(I TO 4) (i) may pick out padding instead of data.

The CHARACTER function can convert a bit string to its binary, octal, decimal, or hex- _-

adecimal character representation. This is specified via a radix, which is written as a sub- 4
script: for example:

II alZeLkql[I$ BIT(eli
[
H B • BIT(IS); /
!
n _a_TtlB! Ct_q_TtA _l; *_
s _¢tg

[.
fl MPITE(61 CH/IRAGTER (BI|

• II S _OEC ,-
,v

• _" ' H ialXT[(OI CHAR&CT|I_IQCTiBli £!

| till

HItITI(B ! ¢HAIACTER" MIN

!
1_11"_(6) Ill ,:

1980004512-241

2

I J'_ o_vltem rrl,jlr_mFnltll 4iris

would produce:

"i_"
,_50
'31"
"0OOI I001"
'00011001"

The BIT ft|nction _,.-anc_,.)tlverta character string back to a bit string. The radix is sup- "_
plied i_.-,,: -:: -.',,11'every character in the string must be a digit in the valid hinge tor the
specttied radix. BIT$t(,,tlEX) ('12"_ i_ P,_N'I_N)IO'. BIT$t(,,OCT)t'12"_ Is BIN'IOIO'. and
BI'rS(c,,'BIN)('i"')would t_'sultinaruntimeerror.Notethatcon_.-_,_,_n=b,'tweencharacter

and hitdo notdepend on thecodesusedtorepresentn0nleralswithincharacterstnngs. .,

Another function.SUBBIT, allowsany datatypeto be referenced,assit_ncd,and snb-

scriptedu._st'itwereu hatstrm_.SUBBIT _htainsthe internalrepresentationof a variable
i withno modit_catlonsat all.Sincetheserepresentationsof IIAL,S datatype,varyl'rom

con.purertocomputer,programswhichuseS[IBBITcan not be machine-independent.

The SUBBIT functionisusedm thecodebelowtocon_erta characterstringcontaining -_
decimal digits to the packed decimal t'oml d_sc,_ed earlier. This routine assumes that the
digits are represented in the I'_BCI)IC character code. In this code (which is not used in all "_

implementations) the decimal digits 0 ¢ are r_presented by the binary codes III!X'F_'
through HFX'FO'.

DI.:CLARI i C ('ItARACTFR (4) INITIAL('I234"L
I)FCLARE II BI'I'(10) INITL_.L[IIFX'OOOO'L
I)O FOR 'gl_MPORARY I = I TO 4:

B = B II SUBBIT $(5 "IX)8){C$I),
END,

The expression%UBB[T$(5 TO 8)(C$I)selectsbitsfivethrougheightof thebinaryrep-
resentationof '_,e Ith character of C.StIBBIT can also be used to m_dilv a variable _Lsif
it were a bit string. The SIJBBIT function is dcscri_'d further in the tlAL/S language

specdicatio,

• _r As a final c_.ample of bit strings, consider the following problem: A set of three redun-
dant sensors produce an ARRAY(3) BIT(Ic.L where each sensor contributes one array

element containir.g four fields as shown below:

1980004512-242

................ - _,. _..._- _ - _,_,,_,,_._e,_'_-_'_'_e_','¢,_'_ '_

1

Bit Strings 13-9 j

The problem is to produce a fourth word in the same format which contains averaga values.

The five bit fields will be treated as unsigned integral numbers: the validity bit in the average _,_
will be true if and only if all three input validity bits are true.

_i The data can be declared as:

DECLARE DATA ARRAY(3) BIT(16). _

DECLARE AVERAGE BIT(16): !_[

and the computation can be done in a single statement:

_'V[RAG[z I)11' _S_'tCI_T[G[_(|O_TIL| 11 / .l,J II |IT _SUMtlNT[G[PI|nATAI
S S iT II-_, !:1 TO S S AT If.4k e:S &T

• _ •)I / 111 I! I_IT _$U_llKt[Sl_nttoa'i'A]), /]) II OITA ,_00_T l | O'_t"A _
S • $ AT B-c, i:$ AT |1 |:|6 _:|b 3:|b

*!

Note that the bits in the di._to'am were numbered from one to sixteen, starting at the left _

(or most significant bit). H/',L/S always numbers bits in this way. regardless of any conven- 1
tions that may be used in h',rdware documentation. _

The expression BITS(5 AT #-4) (...) selects the last five bits of its operand. Since the

length of the string ,¢tumed by the BIT function is implementation dependent, the use of
"#-4"' instead of "12" or "28"', etc., is generally prefer*ed.

DATA$(*: I TO 5) is an ARRAY(3) BIT(5): this expression selects a bit partition from

each array element. Thus, the INTEGER function is being presented with an array of"Nl" _
fields.

This example also shows the use of the catenation operator on bit strings, which
operate,, in the same way as on character strings.

_" t In this section, two major uses of bit strings have been presented. First, bit strings were

• I ' used to coUect booleans inlo a single word so that a complex boolean expression could be ._
reduced to a simple comparison; the examples would work under any HAL/S implementa-
tion. The other major use of bit strings is for manipulating quantities of less than one

addrestability atom; bit subscripts used to pick apart a word of memory. This allows explicit
user control over the packing of data, and provides a facility for reformatting avionic, !/O
data. In this case, such considerations as the word size of the target machine and the internal
representations of HAL/S data become important: hence, there is a delpree of implementa-
tion-dependence in the use of bit strings.

" i

__JI _ -- I.IIIII I II _._.,.,,

qg800045q 2-243

i,

,r

13-10 Sy:tem Profmmmtnf , Aid:

Exercises

i 3.1A Given,

DECLARE FLAGS BIT(12);

write expressions that test for each of the following conditions without using
subsc,ipts: _'

/

a) bits I and 2 on.

b) even numbered bits off, •

c) first six bits off or last six on.

d) bits I. 3, 5, I 1 on. _,,_ers off. and

e) bits I. 3.5, 11 on, 2, 12 off. others irrelevant.

4

13.1B Fill in the following function so it agrees with the comment:

FLIP: FUNCTION(B) BIT(12);
DECLARE B BIT(12);

C Return strinil of bit5 in rever_ order.
C i.e.. FLiP(HEX'OOl')should be HEX'800'.

CLOSE FLIP; !

13.1C Six bits can represent an integer value between zero and 63. if a table of 200 _uch _,"
values were to be stored in a computer with a 24-bit word. it would be advantageous
to pack four values per word. Write a procedure.

SET_BITS: PROCEDURE(ENTRY,VALUE);

which can be called to set one of the 200 6-bit entries to value, and a function,

GET_BITS: FUNCTION(ENTRY) INTEGER,

which returns the value ofoue entry. Use the decis,-atlon:

,4 DECLARE TABLE ARRAY(50) BIT(24);

13. ID A common format for floating point numbers combts of a Silm bit. followed by
seven exponent bits, and 24 mantissa bits. The value of the number is:

_.mantissa x 16 exponent -64

15 A non-zero number is said to be *'normalized" if the lust four bits of the mantissa
are not all zero. Write a procedure which interprets its BIT(32) mxlument am •

flmtinlt point number, and returns • BIT(32) which has the same rio•tin| point
value 8s the input, but is nomalized. If the input mantissa is O. then return true
zero (i.e., all bits = 0). When would such a routine be useful?

.f*

Ib

1980004512-244

/

Name Varlablet 13.11
?

13. IE Re-do the packed decimal to integer convenion example in the text using only one
executable statement.

13.IF Re-do the problem above without any arithmetic operators. Hint: Use character

operations.

13.2 NAME VARIABLES

Name variables are pointers or addresses; they allow data to be referenced indirectly.
Name variables are sometimes called "pointers-to", since each name variable can point only
at variables of a given data type. The type of the data pointed to is specified in the declara-
tion of the name variable itself.

The most prevalent use of pointers in general is to pass the address of a data aggresate
(such as MATRIX) to a subroutine. In HAL/S, this is done implicitly via ASSIGN param-
eters; hence, the need for name variables in application programs is almost eliminated. In
system programs, name variables may be used for efficiency in maintaininll linked lists and

a queues, for buffer control and storage manasement, and for interfaces to non-HAL/S code
or I/O hardware (e.g., a DMA channel).

Another common use of name variables is to avoid a repeated structure subscript opera-
tion. Suppose an inertial sensor produces data in the format indicated below: :

STRUCTURE IMU DATA:
! DELTA_V ARRAY(3) INTEGER DOUBLE,
! ATTITUDE ARRAY(3) INTEGER,
I STATUS BIT(16);

There are three of these senton:

DF.CLARE IMU INPT IMU DATA-STRUCTURE(3);

A low rate process is to select the best of the three copies of IMU data; the entire structure
is to be read and the selected copy processed at a hilher rate. One way* to past the selection
information between the processes is u a structure sub_'ript. An inteler.

, • DECLARE BEST INTEGER;

could be located in a compool visible to both processes, it would be usilned to I, 2 or 3 at
the low rate, and the high rate would have computations involvinll IMU_INlrr$(BEST;). No
name variables are used so far, but this solution will work. Individual components of the
selected structure can be referenced m in:

PITCH ANGLE = SCALAR(IMU INPT.ATTITUDEBEST.I);

•without u_ 8 namev_jat_

.dF_

Q¢. #.t_.

b

j-. J

1980004512-245

13-12 Sylt,rm Pvolv_mmlnE Aats

Every reference to the selected structure copy includes the subscripting operation. This
conceptua:ly involves adding the baseaddressof the structure to the product of the strut-

/ ture width and the value of BEST. Multiplication is relatively slow on most computers, it
would generally be more efficient to compute the addressof the BESTcopy of IMU INPT
only once and reference it directly through this saved address. Both "indexing" and "in-
direction" are performed in a variety of ways on different computers, but when the index
requires multiplication, in this case by the wiJth of ten integers, indirection is quicker.This
is not to say that it is always preferred;some of the risks of using name variables will be
discussedlater.

Before giving the name variablesolution, we note that the addresscan becomputed and
saved by adding an additional procedure:

I
Ei .

• N CAI.L XTIA ASSIGN(IHU ZHPT);
S BEST;

H XTgA:
n PRc¢I[_I1[1[A_qJZ_NIIbEST.ZMU)|
m el[CLAREISEST.YrlUIEU OATA-STI_JCTUII||

il_ °.,

M PZTI_4ANGLE• SeALAIItI|EST_ZI_.AVT][TUOE 1;
$ l

¢ ,..

n CLOS| X_la;

Here the structure subscript is eliminated throughout the XTRA code block, since HALLS
ASSIGN parameters ate a case of "call by reference" rather than '*call by value"; the
address of the argument is passed to the procedure. Name variablesallow the uh-netype of
indirect reference without the overhead of calling an extra procedure.This is shown below:

• m
s t tt STIIUCTUI| Inu DATA;
s • ' n I O|LTA.V A_IIAYI]I) llNrTEglll I)CUIk|t

H | ATTITUO| AelIAY¢]I |Nrlrl_[ll,
H | lit?US IIl¢li)|

H Ol[¢l,Jdllr |rtU INPT ll_J OATA-STIIUCl_IIt|3)|
I1 OI[I:LAIII[lid[STxNr|lLIl!
H OECLAIIEpiTCh att6gl[SCAt.till

FI O|CLAt| IHIIT IHU _ |HU.DATA-|TllUCTUWl;

re_

i

k

] 980004512-246

Name J argo eJ 13"1.t

I11 LOM t&T[:
TAS_ '

M O_CLARI[BlEST IH'I*EGE_;
N CArL TB0 ASSIGHIB[ST);

fl _[til[$T_|/*_J) I NAK[IZr?3_XNPT l;
$ _(ST;

n CLOSE L_IiLT| ;

C

M HZ IATl[:
Iq TASK;

H P|TCH ANGLE • SCJ_AI_(BEST ZP_.I.ATTZT_E);
S 1

C ...

ff CLOSE HI[IIATI[;

8

Thts program is much the same as before. In particular, the !11 RATI- task is the same as
when BEST IMU was an assign parameter, except that the XTRA procedure is gone.

The name variable. BEST IMU, o,.-cuts three times In the program above. F,nt is the
declaration: a variable is speclfi°'d to be a name by placitlg the keyword NAME before
the data type The second mswhen tt appears as an operand ,'o the NAME function in the

LOW RATE task In thinscontext land only m this coatext) the name zs treated as a pointer.
llere st gs set to the address of the best copy of IMII INPT. I'he only way to "'re-_int'" tl_e
name variable BFST IMU ss by execut,nlt a statement of the titan.

NAMEtBEST IMU) ,' NAMEL..);

The only way to reference a name variable's pointer value at all is by use of the NAME
function, Normally. BE_'_ "MU ,s of type IMU DATA-STRUCTURE. _t may be used any.
where that a non-name v,:,ahle of type IMU DATA-STRUCTURE is allo_ed. In a normal
¢onte,tt. outsade the name function, a name variable serves as an "aliasfor data of some other
type. hence the terminolottY NAMF instead of "po,nter". This is not at all the same as the
me of a REPLACE macro as in:- l0

J

• # RI:PLACE BEST IMU BY "IMU INPT$ (BEST.)).

because the replace macro results m the subscript operation p,'rformed every time. In the
caseof name variables, chanlgt_to the value of BEST only affect wh,ch data is referenced by

'_ BEST IMU when the

NAMEIBFST IMU) = NAMFtlMU INPI'$ IBFST;));

name asaqlnment is ¢_ecuted.

t

1980004512-247

13.11 $vJtrm I_,ollhlmm,nl.ltd_

Name variahlel may be of almost any data type, lhoulh the moll u_ful is slruclurf. The
types of dais to which names cannol point arc fho_e which requL,_ more than a simple

•' address Io describe. These are lbe same types that are disallowed as aSStlm per•mite•,; ex-
amples inclu_l¢ bit partitions, malrix columns, etc

A name variable can only r_fer to data of ix•oily the ume type as specified in :is decla-
ration. This means thai eU of the type attribut_ mus: match, includinit pre_ision. •rrayneu,
structure hierarchy, and so on. The INITIAL atthbule is an exception. The statement

m, i

1t'l DllLAR| ||$T._P_J _ ZI'IU.D**YA*_IIUCTUIt| _TI•LIKaflEf]DgJ:INPT)11

i || i ii i J i,

initializes NAME(BEST_IMU). i.e.. the pointer ,,llue. When a name variable is declared.
Ihe amount of stora_ reserved b jml ¢noulh for one eddreu. T_ INITIAL •ttdbut¢

a specifics the value to be placed in Ihis addrm word. The block of star•as needed to ¢ont,,,_
an IMU_DATA-STRUCTURE is not allocated whc11 the name is de_'lared, thus the ,nitial
values for the structure pointed at mint be specified ebewhc_e. The stairr,._ni shown c•nscs
the name variable laEST_iMU to point initially at the K.cond copy of i_.:U INFT.

If the INITIAL attribute is not specified in • name de,aeration, lhe name initially points
nowbene. A special value is used as • null address so thai _ untntiial._zed name, have the
same values. This null value is an •ddresa at which it is JmpoNjble to locate dnl_ and can be
written either as "NULL" or as "NAME/NULl.)". It u, pouibk to determine whether or not

• name variable points anywhere, as shown below:

• i ,, i ii

n xlrI,uJMlll|a .1MUI• HU_AM,&L!7_N
H unz?lial 'IIM' leap Jr' O_IIIwi

The bmdc NAME syntax hal b/m+nlhown in the ccetext of one inaml_; the fon_ of
• p

• dedarinll, inittaU_inJ, re.polntinll, and _lel_felzm:_ll (i.e,, a_,l_| the data pc_nt_l at) haw
• • ' been L_own. The main ¢uml_ reed is machin#.Indepemh_ntand at ltast tomt,whM •pl_ol-

lion or_ntld. No_r_helnt, the_l a_ pitfalb in the me of name var_tbl_. It is diffit'uIt $o
find out what a name variable is poinlinll at by enan_ninlt the code aus'lmundtn8 a _tfeeence
to it. Dula which is sees'mind via nm_ vadabk, s _t not fully tn_ed in tbe ¢*tma n_ferenoe

hstinl. Name vaha_ allow • a_lile k_:atinn to be ret'em_'ed by _trld _ti_. Ipm_bly
rein|tins in ols/cur¢ side.effecls of amdlmmmll. N4tme variables alto tend to bypsas complkt'

1980004512-248

L_Jrarand_bewra I.t-13

optimization, since they make it dtfficull to llnd 8 K'ament of code over which a particular
._ variable b not modified, It b hard for either the programmer or the or.replier to be certain

what is beinl chanlltd when name vaHabln ate uuillncd into. Thus. i! is frequently worth.
whi: to _ a _essefficient but lessdanllerom comtrucl sl_ch_. _*,f_c_ure5ul_lcriptinll. A
common lamem is "1 ,hoqlbl I understc_! this cod.- until I saw _tzcsc-, '- variables!°'.

in most application code. nine _._hl_ sh,_lld be _', .d.-ct. "_ I_mble Imin in effi-
clen_._jis itenerally outweighted by the Iou in reliability u , _intmbilJty*. Name vari-
ablesare prmkled _nllAL/S primarily to allo'._ the writinlg of ._stem software,

Ex_cfRs

13.._A Name any three IIAL/S data iten_ which cannot appear as an operand of the NAME
pseudo-function.

a 1_3,._B Which of the foJlowjn8 can be done with name variables:

a) bYl_m HAL/$ _:opinj rules.

b) declare a structure ;_le with _opimsa.

c) reference a singJedata item by several r,ames or idenUfiers.

d) reference abmlute addreues, and

el chan_ the type of data.

13.3 LLqTS _qlD QUEUES

The flAL/S lanlguaF does not provide syntax for dynamic storaag alJocation. Tempo-
fury varujbles a,"d spaL'e for intermediate reanJtt may be allocated and freed by the runt_me
code, but all de. sions are made beJed en the static block structure, DO... END |_oupinlg,

gl¢. List precemnlt lanlguales can automatically reJease data that is not on any list and
allow the space so created to be used fog Jww ibts. HAL/S does not provide this type of
|rotate tJteniq_i,'n_entheclllGJ_it iSnot pt_b_ to iguaranteethat such systems will not gun
out of sic,nile: this would be an tma_-eptable condition in fiilLht.

_" t Aside from storale manalement, the mo_t valuable feature of lists is that entries can he

, • deleted or inserted in the middle vGthou! copym8 data. Thw capability is ava,. _k in HAL/S
through struclu_s and name va_ables,

Consider the timer queue, a concept _hich is cenmd to many openttinlg systems. Each
entry in the queue contains a time and en xcUml to be t.',ken. The queue is mqdntaiewd in

: order of inci,vasinj time: the top entl_ is Jooded in¢o an interval timer. T!"'. could I_ coded
in IIAL/,q as shown on the next peae'

1980004512-249

J

13-16 Sy, tem PPal'_mra_n_ Aid;

I
n i s1'il_c1tmETQIEI

C L T][H_R GUI[UI[I[LEFRKr

-_ n I TIr_E SCALAR,

.** fl | ACTION _NTEGER,
! AFFIrCT|O F1tOCIr$S HA_ PlIOCES_ COHTItOL-STat_TUnE,I NEXT NAME TGE-STIFUCTURE;

(t OECLARE TQ TQE-STRUCI_J[(|Q0 | |

These statements create a 100-¢opy structure, with four fiekts in each copy. Two fields
are name variables: they are referenced in the usual manner, e4.,

TQ.AFFECTED_ PRCK"ESS$(I ;)

is the third field of the first copy of TQ. It is of type PROCESS ..CONTROL-STRUCTURE.

Only the address Lsphysically contained in TQ$(I ;), but tlze structure elsewhere is accessed
J when the name variable is referenced in a normal context (i.e., outside of the NAME func-

t,on). The name variable next points to a TOE structure; the last field of TQE is the name

of another TQE. We will explore the implications of this later. As it stands, all oftbe fields
in TQ are null. The queue could be initialized as shown below:

H DECLARE FREE_Q HAME _Ir-STIKJCTUR[;
/1 OE.'Lallf icrYq HM'R TGI_-STIIUCTUIIE;

H ;HITIAL_ZE !

M HAI'_IFItE| III : 14k_iT_ 1;
S |;

H DO FOIl T[MP_ARY N • Z TO 99;

H HAtII_ITII.HEXT) • NAt_ITQ)_
S HI N*|;

n |t4o;

J

4'
¢

t_

t

1980004512-250

Lut_ dMd f,lseue: ;,; I 7

Now the enlries in the queue al_ lied totx'ther with I_inters, as shown below.

' (FREEfl

| ACTVQ '_ '''

I'he structur_ c_py mlml_r_ are shown in the die.m, hut each field can now he referenced

Wit|tOtll tlSlnJ _ _'OIW number, _s |ndl_at_i in Ihe following table,

a

ReferencedData PointedT,_By

"I_$11:1 FRFF Q

l'L)$t::) FRFF Q NFXI"

TIJS(3:) FRI-F (_,.NEXT,NFX'F

TQ.TIMFS(',1 FRI_F .),NI:.XT,TIMF

Sim'eI:R!!i" tO,NEXTis the nameof a TQt" _truClUlX',il al:,ohasa NFXI" field,Thisfield
I_zlntsat the third entryin tile flee queue,wl_ithat Ih¢ momteelis alsothe third copyof
II,),

l'he |'_rt_t'edLtre hel4._w _,.'rc,lltes lit entry in Ih¢ active queue by renlOVlnl_ it fl_qn the Pt_e

qtleue anti in,_rttnl_ it at the applxq_r.ate I'_int ill A('TV O ha._| on Ihe time field,

H _tCL_lllr 1_41N $C&LtS_
I_1 MI4J,t IHl|¢t| II,
H PIIOCN_klt|14&11_'IRIOC|_S. COhltlIOI_-_HIUCltlP|;

,/
l; T#| tOLI("Wt_,_ Hkttl YLIIIOLI IS U_IP Llkl[& LP_de

R OICII¢'| lNl NIttl 11_/t-,ql'leLICIUOl_

(: II NO IIIII INlltt |fllN iN IIIS_

I
H IF NM_IIItll (1_ • NULL 1_IN

_ ;

g :.

.a" I

,r" I _

- ,i, ,,, ,,

1980004512-251

C

13-13 Sy3tem Pn_,_,_mmmJr Azd$ _;

i

e_

¢ ,:
' C [LS[USE IOP WE[ENTRY FOl_ NI[W ACTI¥1[g _I.ErtENT

E ,.. •H N_M|III N| = NAff,I(FRlff QI; ,.

C It[MOVE NIM _t_TR¥ FROff FP[|.Q __

e • ;M NF;t[IF_[_,_I • _U.MglFm[[I,tl XT I; "_

C PUT I_rO INTO NEW ENTRY

rl N[W TIM[= _[t#;
M HI[W.I*CTI_ t _,¢,_T;

M HA_I[tNI¼.AfFICT[0 PPOCISSt : NM_tP_0CNJLflI[);

C HC_ |t;SI_RT NI[14EtlTflY |H APPmI_ZATE I_It4T OF ACTV ql_U[

¢ 0_ AT t_, OF _,J[UE

II If k'T¼.TIfll[• /,_TV_O.T|fl_. T_EN
DO; •

NA/IE(_[W.fl[XTI • kUtrSI[IACTV_l); /_ Pt/T rIRSl'*_/

II NAr_[(A_.TV QI • NA/_IHEi4|; * ?_,
H I_I[TUW_,;

[NO;

tt H*_KI[IENT! • N_(&¢TV ¢i)_ /_STJUIT AT TOP_/

OO UNT_[LN_)_I_I|NT.tI_XT) z H_It[iNULL); /V SEAitCYl_t/

q HAt[IENTI • N&fl[IACTV q)| /*_S_T AT TOPs/
I1 ZF |NT.HI[XT.TIM_ • N|N.tr|ff[THEN

90;

H&_IHEM.t_XT) • H&F4_S|NT.t4[XTt| _'
e . ,
N N&fI_It'NI".NIX'TI _ NArII[(N[WI; L
H g_TUPN_ I_ HI[W EHTWY |)_[flTEO _Jt
H [NO; •
|) •
H NAH_I|NT) • NM_IENT.NI[XT); /4_ TIIy NI[XT I[HTI_y4_/

• I
_ _ AT THIS PO|HT * THE _HO_.| (_ W&S $|MtCHEO UHSUCC|SSFULLY*C SO AOONEWTO THE ENO "'

, Ir , ,
fl NAII_IEklT.N|XTI • NMII;IN_H)|

•I¢" ::

r

]9800045]2-252

I r_:_,m,I()ueurs 13.IV

flus procedure ¢.Aninsert an entry in the middle of the queue withou! physically moving "

subsequententriesdown, sincethe sequencemformalionisencoded in the links(name _.

varia',,leslratherlhanthepositionm memory (|heCOpynumber).After :!
¢

('ALL ENQUEUE(10. I, NULLI; (:

i¢.excculed, lhe queue looks like'

lAc-_o "

If the next calls are ?

C_LL ENQUEUE(20, I. NULL);)

CALL ENQUEUE(15. I. NULL); :

the queue looks like,

10 2

[rR[f C) nlu,IQ l -'_

. ,_ iP

,,4 _

,o

!

•' Now, ACTV Q is TQ$O ;L '_
ACTV Q,NEXI is TQ$_3;L and ':
ACTV ..Q,NEXT.NEXT is TQ$(2 ;_.

,it" : ,i

i •42
Ih

"X

]9800045]2-253

Thus when viewed as a lisl slructure, the elements of ACTV. Q are sorted by increaslnlt
TIME, even though

: TQ,TIMI'_2J > TQ,TIMF$t3,1,

*l'hlsqueue cotildhe usedinimplementingthe IIAL/S reallimeslalemenl,',,]'herode
below illnstrale,_ how the llmer queue might be u_cd, TILe('ALL SFT CLOCK and WA|T
FOR evenl _latemenls ar_ intended 1o load the value Acrv Q.TIME into an interval hmer,
and wail for the interrupt,]'his would have to be done via assembly language or ";-u_acms,
"'Pe_'enl" macros are mlp|elnenlalion-depcndenl. They allow a IW¢.d_fined seqller_ce of
machine inslruChOlLSto be in_rleJ in a llAI S program. Mo_ delail is given in each User's
Manual,

a

n IHT H,_It/_LER:
H TASY_,
H t)ECLM_E rL3CI_,_NT_RRUPT EVENT;
M OECLARE TLhP NMtI TQE-$TUUC'fUREt
H O0 k'HILI TRUE;
H CALL SIT CLOCKIACTV_Q,TIH(t ASSIEHtCLOCK.INTE_RUPTII
H _A_T fOq CLOCK_ItlTERgUPT;
N 0rJ CASE ACTV_Q.AC_ION;
E •
tt CALL RI[CYCLE(A(:TV.Q, AirF ECTED_FI_Q¢|S$ t;
E
H CALL CANCEL..PROC(ACTV.Q. aF FECTED PROCESS) ;
E
M CALL NEADY(ACTV_Q, AFFECT[O.PROCES5) ;
E
II CALL SCNEDUL|.aT! ACTV.Q, AFF(CT_O_PROCESS) |
H _. /_ EI"C u/

C NOX REMOVI TOE FROII ACTIVE _,,,AlN

| t t
fl NAHEITEt_I • NAI_IAC1V.QI|
E • t
M NAMEI ACTVQ I u HAM| (ACTV II. NEXT) i

• a ill E * t
I'1 NABEITI[HP,NI[XTi • NJUql._tFItEE.@)|

m #' E
It N4MEIFRI|.¢Ii • NAME(TEll!)|*
N ll_;
M CLOSE;
H IIIICYCLi :
I'1 FROCEOUREiX L;
M DECLARE X PIIOCE$$.CQi_1WOL-I,I_'U_T_I!EI
II CLOSE L

; N CA_K;EL.,,P'_OC:
M ImocEOU11|(X) ;

- N O.CLA_E x II_I)cEsS C_OH'fltOL-_'Iln, X;T1JIIEI

19800045] 2-254

i

: !

I._s,and @,cues 13.21 _ _"

With the process INT ltANI)LER running, and appropriate routints to recy_:le, cancel, and }

otherwL_e change proces._ states, ENQUt'UE could be called as a result of several llAL/S
statements. "WAIT .5 ;" executed by some process X plight be translated to: _ _

L CALL I'NQUEUE(RUNI"IME + .5, 3. NAME(X)):. _ ,_
_. ('ALL STALL(NAMF(XJ): /*enter wait state*/ ,,

Here we art" assuming that X is a PROCESS ('ONTROL-STRL;CrURE. Such _ structure

might consistof:

11 STRUCTURE PROCESS, CONtrOL: '_-
H 1 SAVE_A_EA RIGID,

n E FI'<EG_REGD AaR&Y(16 t BITI 31_t,
I1 _ FLOAT REDS ARRATID) SCALAa DOUBLE, _"
n _ OTHER GITt3:), _
f¢ 1 P_I(?_ITIE INTEGER,
It 1 STATUS INTEGER_ -"

II I g[._T NAME I_OCESS_CONTROL-SII_UCTUaE,
rl I LAST HArDE Iq;*OCESS.CONTROL*STRUCTURE ;

a "-

where the node, SAVE AREA is machine dependent. This is a double linked list: each
entry has both forward and backward pointers. To see how thi,_is useful, suppose that there

arc three qneues containing process control blo_:ks (P('Bs). FREEPC will be the anchor
(simple name variable pointin8 at the first element of) of a queue of unused PCBs.
READYPC will be the anchor of a queue of PCBs representing re,,dv processes, (sorted by
priority), and STALLED will be a queue representing blu('ked processes (e,g,, those in the

wait state). One of these queues is diagrammed on the next page. All three have the same ,,
form. The STALL routine that was called above mtsht simply remove the indicated process

from the READYPC queue and add it to the STALLED queue. The argument to STALL !.
the address of the PCB to be removed front the READYPC, it could be written as:

R DECLARE READYPC NAHE PROCESS.CONTItOL-$TRUCTURE; _.
n OICLAaE STALLED NAME FROCES$_CONTaOL-$TIIUCTUDE;
N D[CLkRE FREEPC N_rtE PROCES$_C;QflTROL-STRUCTURE;

,I C

H STALL(
H PROCEDURE aSSEGN(PClS) t
fl OECLARE PCB FROCESS_C_ITGOL-STItUCI"JRE;

- C DEMOTEFllOI1DE(BYQUEUE

? .

1980004512-255

13.22 S_'$tem I'ro/_rammzrl_ .41,Is

M NAME_PCB. LA_T.N_XT] : H_'l_! PCD.NEX_) ;

H HA_(PCB.HEXT,LAST| : HIME;PC_.LAST|;

C ADO TO $TkLLEO Q_EUE AT THE EEGItlhilt.;G

M NkMEIPCB._EXT_ : N&ME(FREEPC);
[t •
H H_HE_FREEPC) = HAH_(PCE);
H CLOSE STALL;

H CLOSE LAST EXkHPLE;

The reason a double linked hst is needed is that STALL receives the address of a PCB in the
middle of a chain.

a " _ To remove it, the links of hoth neighbors must be changed, A siugly linked list would suf
rice if it was always searched starling from READYPC.

in this section, we have sketched portions of one possible implementation of the IIAL/S
real time statements. This design does not nece_arily correspond to any actual operaling

? system, The point of this section is to give a degree of familiarity with sophisticated uses of
: name variables, and to illustrate that large portions of "system programs" can be wrilten m

IIAI,/S.

This system presented is not at all complete. A routine is needed to make a process

ready. It could be e_entially the same as the ENQUL:_UI_routine shown earlier. The routine

that readies a cyclic process when the timer goes off should put a new entry in the queue for
the next cycle, Also, some Iow4evel control code is needed In dispatch the highest priority
ready process. This process is always the one that corresponds to REAi)YI_.', since the

oe'"

.1_o •

r #" ".

;L'g
r

1980004512-256

Listxa.d Queues 13.2._ ;_

ready queue is sorted, the top routit,e is always the one to receive control. However, there is _ _:

no HALLS syntax for branching to a program or tot loading/storing specific machine regis- "_
/ tet_. At some level, assembly language has to be used, thou# HAL/S does allow certain _

-i canned machineinstruction sequences to be generated via '_ macros. These macros make _
machine dependencies highly visible in the listing. If the ';-macros defined for a particular _
implementation are not sufficient, assembly langt,age comsubs can fib the gap.

Name variables, percent macros, bit strings. EQUATE EXTERNAL*, and the ability to
call assembly language routines 'all contribute to making HALLS suitable for systems pro-

gramming. Use of these features in application programming is discouraged; nonetheless. _
some safety is provided by the type checking rules (as applied to name variables and bit
strings) and other safeguards. Even in the system-language portion of HAL/S, many forms
of bad programming practice are precluded by compiler restrictions. These features are
designed so that reliable, readable and efficient programming is still encouraged even though '_
it cannot be as thoroughly enforced when the system programming features are used.

a

Exercises

C
13.3A Declare and initialize a structure, CIRCLE. such that the following relation is true:

NAMEiCIRCLE.NEXT) = NAMEtCIRCLE).

13.3B Change the declaration of the timer queue so that each element tTQE) is the head of

an arbitrary4ength list of action.affected process pair_ all to be done at the same
time, as illustrated.

d

'" ' "I I l ,,c.

N ACnO.--i ' 'l

']AFFECTEDPR&]
ActionsetXJ _iI Actions tt 1

tlme I _. ttm 2 .

i _See appropdateUml's Mtmualfor dettih,

Z_

4,

tr _ °',

i "

,L

1980004512-257

19 24 ,¥vst¢_t I'r+,gramm:nX 4Mr

(,'hangc the I NQU! Lli rouluz¢ to etlht'r add the new ell'niL'hi to the end of an
L'XlSttllg hit, If" liter+, is alrc+',dyone, or more actions at thdl limP, or lllsl_'rt d nl'w ilxl

+oflslsltn+ of" + li_'+,derand the new itcni.

13.3C As v,'ntlen 111the text. lhe proc¢dufe STALL may latI with sortie tlIpUts. When _ill
llns haplY'n? P,lodH'._ the procedureto remove thls prohlenl. +

End of Chapter Problems

IJA _l,'nlr .-,proct'dur¢which will Inserta PKOCI-SS ('ONI'ROL-SIRUCTURI: in lh_'

RI£AI)Y I_"queue(bothdelint,d msin._'¢tton13..:I)after_II[entriesh_Iv,nl__incqu:,l
or higherPRIORITY and hcf'oreallentriesthat-',relower.Remember to m_intam
bolhforw-',rdand h'_ckw.',rdlinks.

l._ll Wnte a pro_mm which willleadinlwo hexadeomal m,mhe_ (oI"up It mx di_lls)
.,,ep_r.'_ledby elther'_plusor llllnusstjln,and prmt theirsun+or dlfler_.nccinholh

I dectfual dnd hcxaSeClm,'tl.

+,

• I

_4

l+,++

+++

• ++ +

]9800045]2-258

Introduction l J-!

14.O FIXED POINT

14,1 INTRODUCTION

HALLS pmvidt_ a scaled fixed point facility via the FIXED data type, It is expected that
the FIXED data type will mainly be used for computers which do not support SCALARs,
This ch.qpterexplains how fixed point computations are pmpammed in ItAL/S. It assumes
the reader is famnliar with fixed point concepts.

FIXED variablesare d_laredasin:

DECLARE R FIXED @_5;

A FIXED variable rcpregnts an enltineennl value in terms of a stored fraction times a de-
dat_l _ale factor. In this exampk we have:

. r,.kx. _s

where R is the fra_'tion stored in vanable r, and the scale factor is 2 r-_sed to the fifth power
(specified by "(-'3". Since R must always be a fraction, r can repr_qt valu_ in tl_e nmge

• • i__25, 2S).(-3.,3.), i.e.. it is the responsibility of the propammer to select a scale fa,.'tor
lart_r than the maximum magnitude of values to be lepresented by each FIXED variableso
that the stored value is always a fraction.

The HAL/S approach to fixed point contributes to proluram IX_rtability and program
correctness. In the first place, a program employinlg FIXED computations does not need
any modification in order to be compiled for a different target computer. More importantly,
the only chanlgesin the behavior of the prop'am concern the precision of the values com-
puted. On computers with different word sizes, the number of bits employed in repr_entinlt
FIXED v_lues (i.e.. the fraction) will differ. Howewr, the difference only affects the num-
ber of binary dilits of pre_ision. Therefore. computations on the ahoflef word-lenlgth
machine willbe lea pre_-ise than those performed on a Ionller word4enath machine, but the
values produced will be very similar,

As for plOllxam corr_tnem, HALLS compilers enfon:e several la_tuaae rules which
a" _ efiminate the common errors which can arise in the use of FIXED data types. One rule is

• • that the source and tarltet of an mudamment statement must have the rome gale factor. A
Wollram whi_,h disobeys this rule wad obviously produce spurious results. The important
point is that uplJke assemblers, II?,L/S compilers will catch such errors durinj compilation.
Another rule is that scale factor equulJty is required for operandi of addition and subtrw:.
tion, and between aqluments and formal parameters of subroutine_ This rule's motivation is
the same at for the tint role.

• !

In s fractional n;pretentation Jstnl a finite number of bits, in¢_aainS the number of

Jeadin8 binary zeros de_Te_ the number of meaningful b_ dqlits and thereby decreases
the precision. However, the lUtelihood of owrflow is declrenNd when the number of leading
zeros is increased. Makinl 8 mc_'esd'ul trmfleofl"between these two post.lions requires an
undernandlnl of the _)atmct computation I_dns performed, The pmlnmmer - not, com-
pilaf _ knows best how to make this dec_)n. Furthermore, it is often ueceeRry for the _,

.#" proigntmm_r to cc,ntml exactly the magulinil to be performed, which is difficult in s L'ontext

• . of automatic relcminlL _;

_ r

i L'I

1980004512-259

14 2 FIXED Pmnt

/
For these reasons. HAL/S does not automatncally rescale FIXED quantities, but rather

providesa res_aling facility so the programmer can exercise necessary control.

14.2 SCALING

Scaling can be performed on literals and expressions with the scaling operator
"'(_<exp>" m order to change their fraction and scale factor while preservingtheirabstract
values. The e,_pression:

3.14159_a5

cauls the value of pi to be scaled by 25; i.e. the stored fraction ofpi ,, 3 14159/25. Note
that

3.14:5q=3.1415q/25 x .-

I fraction s,.'alefactor

Applying ,'ca<exp>" to a FIXED expression has the effect of multiplying the originalscale
factor by 2<e_P > (i.e.. adding <exp> to the exponem of 2). and divndingthe fraction by
2<exp>. Literalswithout explicit scaling are considered to have a scale factor of 20 ,, I. and
must have absolute values of less than I.

Scalingcan be.employed in order to satisfy the scale factor rule for assignment, as in:

R " 3.14159_5;

where R has been declared with scale factor 25. Other instances of scale factor mismatch
can beadjusted through the useof scaling.

The scaling operator can also be employed in FIXED computations for maintaining
maximum precision and preventing overflow. Recall that precision is increased when the
fraction has fewer leading binary zeros, since then more significant bits can be held in a
storalw unit. This may be accomphshed by reducing the scale factor. For example, to reduce

t the scale factor of R by 23. i.e.
J

,2
.d" r- R x 25- I__ 3 x .

or Rfa, 3 - R x 23 - qSR)

The fraction R is increasedby a factor of 8, thereby reducing the number of leading zeros.
[

On the other hand, overflow can be avoided by increasingthe number of leadingzeros.
For Jr,stance,if r ,' 24 so that R * .75, then codinl:

2R

will cause overflow. If the scaling is changed to reduce the size of the f.-actlon:

_¢' R(,//ae .75/2 m .375 (where the scale factor is now 26)

1980004512-260

........ _ .. ._ _, _, ._ . ,._ .,. _.--_ _/_._4p_ _ _,_..-_-_ _.,.__,_-

\

*m

ExprtsJions 14.3 1

then the expreudon2 P._t will produce,75, therebypreventinloverflow The abstract _ i
valueis correct,ie.. ,75 x ,.. and the fraction hasmalnitudelett than I SucceBfulmaxi-

._ mizationof precision,whileavoidinloverflow,requiresthepmlrammerto fully understand '.
the ranp._of the abstract quantities beinlgcombined.

Note lisa: another method of increasingprecision is to explicitly specify "@DOUBLE" i]
within exp_uions, thoulgh us_Jly at increasedexecution and storalgecosts. See Section 3.4
fora descriptionof the precision attributes.

14.3 EXPRESSIONS

The arithmetic operatorshave their usual meaninas when applied to FIXED expressions. _ _
There are a few additionalrules which specify the treatment of scale facton, i

+, - Addition and subtraction. 1he operands are both FIXED data types :
and must have identical scale factors, The result has the same gale

a factor as the operands. _,

Multiplication Indicated by an adjacency. The operands are both FIXED data types
or one is INTEGER.An INTEGERoperand indicates repeated addi- ,
lion (as specified above) of the FIXED opegand. Otherwise. the
two FIXED data types are multiplied, and the resulting scale factor is

the product of the operands'_ale factors.
Division. The operands are both FIXED or the rilghtoperand is
INTEGER. The left operand is divided by the riJht operand, and the _ _:
s_-'suitinlgscale factor is that of the left divkienddivided by that of the
tight. For division by an INTEGER. the rewIt's scale factor is that of
the FIXED operand.

** Exponentiation. The left operandis FIXED and the riaht operand is ;
a positive INTEGER knownat compile-time. Exponentiation indicates _:
repeated multiplication of the FIXED operand by itself, usin| the "; °
mult;T_licationrules specified above.

Forexample, let:

" It n-bc+d !

be a computation to be performed, where the scale factors of the variablesarechmen for _,
illustrationpurposes. The fobowinlgprogram fraament shows how thiscan be coded:

DECLARE FIXED,
A _2, B t_3, C @4, D @5;

A • (a c__ s + P__3; '_

/s A = B x C x 25 + D x 23 0/

, There is • potentialfor Iotdn|precisionJnthecomputation"(B C')" bcgttuwthe_ t batat _ :
lemS five leadJnlgbinary z_rm. which aJ_ thifted out by '_-5". However, tf the computer
nomudly fomu • doublepngtmjon mud• amthe product of alnide pgedaloe openmds, then _

-,K thecompilerwill performthe nnctllnl ou the doublepreston value_'o_ conv_nhnlto

"
" i

]9800045]2-26]

I.l.,I FI TFD?hint

dnlgleprec_ion. Thus maximum precision is retaine,t at no additional co_t. In the ab_n_-¢ of
such hardware supporl, the prolffammer can preserve pr_ision with"

A " ¢B C(a_DOUBLEX,__5 + D(,, 3:

('h._ck the approp_tte User's Manual for a desehption of how your particular IIAL/S com-
piler treats this case.

Notice that the subscript notation for scaling operations contributes to the readability
of FIXED expressiom,, The scaling operations do not so clutter the appearance of a compu-
ration so its abstract n,cantntt is easily seen.

ReadabilJ{y and modil_bi]ity can be enhanced by u,lnlg named constants instead of
litetats for stalin| as in the following example:

DECLARE INTEGER.

PS CONSTA NT(2).
RS CONSTANT! 5).

a C PI SCALE AND g SCALE

DECLARE PI FIXED (,'PS CONSTANT (3.1415o@,pS).
DECLARE FIXED.

R _'gs,
AREA (_(PS + 2 RS).
CIRCUM _(PS + RS):

rlR'.::
CIRCUM - 2 PI R.

14.4 SHAPING FUNCTIONS

As with the other arithmeth: data types, the FIXED data type has a zhapinll function,
which is named "FIXED". A u_ of this function includea a _alinl; _¢_ciF_r (in the usual
"_<exp>" subw:ript notatioz;) to tell how the vait_ I_inll converted to a FIXED is to be
scaled. For example, if J is an INTEGER with _alu_ It,. then the expresa_on

t FIXED_'5 (J)
j"

, I has tlW FIXED vai_'

16/2 5 _ .5

: Thus, the tcali.41 tpecifier acts bke the _'dinlt operator. A k'DI ut._e of th_ expreution
might be an zument to the FIXED variabk R from earlier eumplez:

R " FIXEI_$ I J):

Nzt_mdly. tl_ FIXED dtaplng ftmetion can zho be mpl_ to _ The _linll q_c_.
fkflr mtl_ he _ el_qgJl IN)that the ¢onvcrled _ll_g M ttl_y I fr_'tion.

:,t

_,.

J

,e

1980004512-262

$celJ_ RevtJIled 14.5 _.

When convertin| from a F_,AED to some o_her arithm_ic data type, a K,Jing specifier
is also employed. This is u_d to satisfy the reqM_,/_ent that tl-.¢ scale factor of the I_,su]t
of the convci_ion be I (i.e., 20). For instance,one wouM write:

J ,, INTEGER__ 5 (R):

This has the effect of removing the scaling from the abstract value represented by R. (Note
that the ¢xpfvssion:

1_-5

has a similar intent of attempting to me! *he scale factor to I, but does not work because
overflow will p."obably occur.) The other shaping functions SCALAR. VECTOR, and
MATRIX also have a scaling specifier when applied to FIXED datatypes.

a 14.5 VECTORF AND MATRIXF

The data types VECTORF and MATRIXF ate similar to VECTOR and MATRIX. but

they have FIXED data types instead of SCALARs as components. Many of the operations
applicable to VECTORs and MATRIXs ate available for their FIXED anak_ls vECTORF
and MATRIXF are decla_.d and used with scaling, which appdcs to tha_ FIXED com.
pOrl_nts.

LpECLARE POSITION VECTORF @iO _

IsinaL (100.0_10. 30@10. -40_10);

Further details on these data types can he found in the HAL/S Langua,_e SpccificetJon.

14.6 SCA'JNG REVISITED

The construct "0_<exp>" specifies scale f_-ton which are power, of 2 "_ueh,,'like fac-
tors am advantascous because on moa mzchir, es rascaling can be accomplLshed by shifting
the fraction rilht by <exp> bits (left if <exP_ is nekatiw), and by adding <exp> to the
exponent of the scale factors, instead of the Jno_e :xpensive multiplication or division.

P

• • O¢CJl_l_y it JS mO_ netUtlJ tO I ion_' other _ lictor, e.l., pt. This is a4:h_fgd

via "0_a_<exp>'. In this cate <exp> itlelf i_ tneated at the _'ale factor T_m "(_-e" is z
shortJum_ for "O_02e".

D£('LARE ANGLE FIXED #c_PI

W'TIAL (I.O_i_pi);
I C I RAbiAN SCALED BY Pl.

... rX)S(ANGLE)...
C TRIIG_OMETRIC FUNCTIONS EXPECT FIXEDS SCALED BY PI.

In this e_umll_ke,_ can he ffplemmlad by:

_I_LEx_

,_y,.

\

] 9800045] 2-263

14.6FIXEDPoint

Notice that scaling by other than powers of two implies that _ctual multiplications and
divisions are performed.

_- It is even possible to have FIXED data types without any scaling.

DECLARE BE_CAREFUL FIXED INITIAL (0.15);

If an operation has an operand with unspecified scaling, then the resu,t also has unspeci-
ficd scaling. Scale factor matching ts not required when one of the expressions has an un-
specified scale factor. This m_de of FIXED usage is rarely desirable because the compiler
cannot provide checking and scale factor support. Rather, it becomes the programmer's
responsibility to perform the scale factor manipulations by hand.

One reason for employing FIXED data types without scale factors is in the simulation
of floating point. The built-in functions NORMALIZE and NORMCOUNT can be nsed in

such an application to shift out leading zeros, and count the number of positions shifted,
respectively.

End of Chapter Problems

DECLARE FIXED,

A @7, B @3, C (a)2,D @4;

14A Fill in the correct scalings in

A = ((B C)@? + D)@?:

14B Why is

B = 2 C(,vl :

Safer than

B = (2 C)@I :

r •

r

/

1980004512-264

3

l ,7)

k
Ali_ieeldlll A +l'] x+

G
/ Appendix A

ARITHMETIC FUNCTIONS

• Arguments nlay be integer or scalar.

• the data type of the result matches the argument type miles> otherwise /
ilotett,

• Arrayed arguments generate multiple invocations of a function, one for -
eacl! element in the array. When two or more arguments are arrayed.
their arrayness must match.*

Name <Arguments(s)> Comments _
i

ABS(X) Absolute value IXI.
,11 ""

('EII.IN(;(X) Smallest integer • X. _+
CFILING(-3.4) returns -3.

DIV(X,Y) Integer division X/Y: _here scalar arguments are

rounded to integers. This constrtlc! is the only way to
do integer division in HAL.

DIV(5,.') returns 2.

Note: Where X. Y, Z ire integers X = 5. Y = 2. The
statement Z = X/Y results in two integer to scalar con-
versions and a scala, &vide. Finally. tile restllt is con-

verted to an integer type In this case Z = X/Y sets Z
to 3.

FLOOR(X) Largest integerg X.

FLOOR(- 3.4) returns -4.

Mil)VAL(X,Y,Z) The value of the argument which is algebraically be-
" t tween the other two. If two or more arguments have the

. 4" _',nle value, that value is returned.

MIDVAL(.4, - 6, 3.5) returns -.4.

MOIXX,Y) X MOD Y Imodulus). Tile result is scalar unless botll

4 arguments are integers.

"_, MOD(5,31 returns 2.

.,ti MOD(5, 3) returns 2.
MOIM - 5,3) return._ I.

MOD(-5, 3) returns I.
MODt - 5,2. I I returns 1.3.

_l* *For a di_cuuion of arrsyness, see Seetl,m 6,L

,ee -

#, ,*
r
.._i

1980004512-265

<

A.2 ,4ppeadlv ,4

ARITHMETIC FUNCTIONS (CONT'D.)
,, ,, , ,,

Name _ArBumentis)> Comments :.

; ODD(X) Resull ts BOOLEAN. True if X isodd. false it"X is even.

IF(ODD(X))
"l"flliN...

Note,ScalarargumentsareroundL.dtointeger. ._

REMAINDER(X.Y) Signed remainder of inleger division X/Y.

REMAINDER(5.3) returns 2.

REMAINDER(S.- 3) returns 2.
.- REMAINER(5.- 3) returns "_

Note. Scalar argL,nlent.s arc rounded to integers.
u

ROUN,_(X) Nearest integral vahle to X. essentially the same as H. _L

a scalar to integer conversion. ,_

SIGN(X) Returns an integer. +1 if X > O;
• I ifX< O.

SIGNUM(X) Retnrnsanmteger: +1 if X>O;
OifX=O,
,I ifX<O

DO CASE(SIGNUM(X)+2).

TRUNCATF(X) Strip oft"!'ra_'tlonal part of the scalar (X).

TRUNCATE(3.4_ returns _3.
"I'RUNCATF(7.8) relurns 7.

• Ii

r

d,

1980004512-266

Appendix A A-3 "_
_t

ALGEBRAIC FUNCTIONS

• Arguments may be integer or scalar types - conversion to scalar occurs

with integer arguments.

• Result type is always scalar.

• Arrayed arguments _ause multiple invocations of the function, one per
each array element.

• Angular values are supplied or delivered in radians.*

• Arguments that are outside the domain specified in the comments result
in HAL/S runtime errors, (see Chapter 10).

Name <Argument(s)> Comments

a AqCCOS(X) IXI_ I.

ARCCOSH(X) X > I.

ARCSIN(X) IXI g I.

ARCSINH(X)

ARCTAN2(X,Y) Returns 0 = tan-' (X/Y) where the proper quadrant for
-_ < 0 < _ is determined from the signs of X and Y.
Proper quadrant results if

X = K sin0 } K> 0Y = K cos 0

ARCTAN(X) Principle value only; see above.

ARCTANH(X) IXI < i.

cos(x)

COSH(X)
i

EXP(X) eX.

g

:;" LOG(X) IogeX, X > O.

SIN(X)

"One radian equals$7.2957795131 degrees,so that
wradiansequals IgOdegrees;

w/2 radiansequals90 de_'ees.

I'

1980004512-267

.4.4 .4ppendlx A

ALGEBRAIC FUNCTIONS (CONT'D. }

' Name < A_umenIt s)> Comments

SINH(X)

SQRT(X) _ , X _ 0.

rAN(X_

TANH(X)

VECTOR-MATRIX FUNCTIONS

• Arguments are vector or matrix types as indicated

• Result types are as implied by mathematical operation

• Arrayed arguments cause multiple invocations of the function, one for each
array element

Name, Aqgumcnts Comments

ABVAL(a) Length of vector a

DETla) Determinant of square matrix a

• t INVERSEla) Inverse of nonsingular square matrix a
• ,= , _

, • ' TRACEla) Sum of diagonal elements of square matrix a

TRANSPOSE_a) Transpose of matrix a

UNIT(a) Unit vector in same direction as vector

"x

,r
.,_ 4

I IIIU _ -o

3 "

1980004512-268

Appctldlx A .-I 3

ARRAY FUNCTIONS

• Argumentsmay he single or multi-dimensionalart,' s of scalarsor
integers.

• The type of the result malches lh¢ type of the ar_,umenl al,d is

unarrayed. .,

Name <Argument(s)> Comments ,,

MAX(X) Maximum of all eletncnts Of X,

MIN(X) Minimum of all clement,,, of X.

PROD(X) Product of all elements of X.
=

SUM(X) Sum of all dements of X.

,t

_.g.'

t, "

r

:g

f

]9800045]2-269

A-6 Apptnd_ A

BIT FUNCTIONS

• HALLS provides AND, OR, and NOT operators for bit operands. XOR
{exclusive OR) is available as a built-in function.

Name <Argument(s)> Result Type Comments
I • I

XOR(X,Y) BIT Exclusive OR, where X and Y are bit
strings. The length of the result is the
length of the longer argument. The shorCer
aqB, ment is padded on the left with zeros.

1980004512-270

Apoendlx A A-7 :

CHARACTERFUNCTIONS

• The first : rgument in each of the functions below is acharacter string. If _"
a scalaror integer is specified where a characterstring is expected, a con- ._
version to character type is performed.

Name <Argument(s)> Result Type Comments

INDEX(CI,C2) Integer C2 is a character string. If string C2 is con- !
rained within string CI, an index which is .'
the location of the first characterof C2 in
CI is returned, otherwise, zero is returned.

INDEX('CHARACTER'.*ACTER')returns
5.

INDEX('ALPHA'. 'BETA') returnsO.
l ii, _"

LENGTH(C) Integer Returns the current length of character
stringC.

LJUST(CI,n) Character n is integer type - the string CI is ex-
panded to length n by paddingon the right
with blanks, if n is less than the cltn'ent
length of CI, an error is signaled and CI is
truncated to length n.

RJUST(CI,n) Character n is integer type - the string CI is ex-
panded to length n by padding on the left
with blanks. If n is less than the current
length of CI, an erroris signaledand CI is
truncated to length n.

TRIM(CI) Character Leading and trailing blanks are stripped
from C I.

af

t

w

\ /

1980004512-271

4-/¢ 4;'rcnd_._;.4

MISCELLANEOUS FUNCTIONS ':

• Argumentsareas indicated;if none are indicatedthe functionhasno ._
arguments.

• Resulttypeisasmdicated.

Name <A_umenHs)> ResultType Comments :_

('LOCKTIMF Scalar Elapsed time since midnight (formatis ira- ",
plementation dependent). See Chapter 12.

DATE Integer Returns date (implementation dependent
format).

ERR(;RP Integer Returns group number of last error de-
reeled, or zero if no errorwas detected. See -.

a Chapter IO.

ERRNUM Integer Returns number of last error detected, or
zero if no error was detected. See Chapter
10,

NEXTIHE Scalar <label> is the name of a program or task.
(<label>) The value returned is determined as '.

follows:

a) If the specified process was scheduled
withthe REPEAT EVERY option, and
has begun at leastone cycle of execu-
tion, then the value is the time the next
cycle willbe$in.

b) If the specified process was scheduled
with the IN or AT phrase, and has not
yet begunexecution, thenthevalue is
the time it will begin execution.

c) Otherwise, the value is equal to the cur- :
j"

dr renttime(RUNTIME function). .:

PRIO InteFr Returns priority,,of process calling func-
lion.

RANDOM Scalar Returns pseudo-random number from re¢-

, tangular ,hstribution over rani¢ 0-I*

0:

'Note that for anypantcuhuHAL prol_amcompkxwhichc_ntaknsnfferencuto RANDOMand/m
RANDOMG,thenineactof"rlmdom"numhenwillbel_med Ineacheucmion.

r

.f

_" .tlt

1980004512-272

i

Appcndtx A A-9 ! _:

MISCELLANEOUSFUNCTIONS(CONT'D.)

Name <Arsumentis)> Remit Type Comments

RANDOMG Scalar Returns pscvdo random number from
Gaussian dishmution with a mean of zero,
variance of one.*

RUNTIME Scalar Time since the _ft_are began execrating
(implementatioE; dependent format). See
Chapter 12.

SHL(X,Y) Integer X shifted lef: Y bit positions. X and Y may .
p: scalar or integer, but scalars are con-
cerled to integer before shifting. This isan
arithmetic (signed) shift.
SHL(--22) returns -8.

a

SHR(X,Y) Integer X shifts rightY bit positions. As above, this
is an arithmetic shift.

SHR(--4,2) returns --I.

SIZE(X) Integer One of the following must hold:

- X is an unsubscripted arrayed variable
with a one-dimensional arrayspecifica- ,.
tion - function returns length of array.

X is an unsubscripted ma_or structure
with a multiple copy specification -
function returnsnumber of copies.

X is an unsubscripted structure termi-
nal with a one-dimensional array speci-
fication - function returns length of
array,

Result is of integer type.

"Noteti_atfor anyiNirticul_HAL prolp'lmcomplexwhich¢omzinsrefen,ncmto RANDOMInd/of
RANDOM(.;,thesan_I_tof"nmdom"numbenwfl]beIle_tiitedinrich ¢ucution.

. J ,

t,

1980004512-273

,.

.¢

+

Apl_ndlx B B.!

Appendix B ,_

Although the main body of this manual has avoided references to specific compi'.ers. +_

there is considerable similarity in the compilers now available. In this appendix we will de-
scribe additional software development support which is typically provided•

The HAL/S compiler Jsnot simply a language translator• All current implementations in-
clude features not usually found in other common compilers, such as PL/I, FORTRAN, etc. .:

These include special processing and annotation of the listings, facilities for restricting usage
of variables or language features, and additional outputs for post-compilation tools.

In addition to annotating identifiers and indenting as described in the text, the compiler
adds several types of summary infi)rmation to the I,sting. At the end of each procedure or
function block, that block's interfac_ are listed. The information presented includes lists of
global variables referenced or modified, external procedures caI'-.d, event variables modified,
compool REPLACE macros used, and so forth. At the end of the listing a table of identifiers
is printed, including the data type and a list of all statements which use the identifier. Some

a compilers produce a listing of annotated assembly language which corresponds to the

machine code actually generated, This aids in debugging on flight hardware, although more _
sophisticated debugging supports is also provided.

Two facilities provide for the estaOlishment of managerial control over HAL/S usage.
ACCESS rights allow restrictions to be placed on the modification of selected variables or
on the usage of blocks. Since this can be done separately for each compilation unit,
ACCESS rights provide managers with an important tool for controlling the interfaces be.
twee. modules. Another device is the SUBSETing capability, which provides the ability to
restrict the usage of a user selected subset of HAL/S language features or built-in functions.
This mechanism does not affect the code generated but merely flags by a warning message
on the primary listing those statements violating the SUBSET,

The efficiency and reliability of program complexes can be improved by use of a special-
purpose link editor or binder• These programs (e.g., HALLINK) can reduce storage require-
ment,, by generating the call tree beneath each program or task and allocating a temporary
storage area (or stack) just large enough for the longest limb of the tree. If a compiler sys-

_m includes an appropriate link editor, it may also add to software reliability; while the
various HAL/S modules are being bound together, they can ahoobe checked for comhtency.

J" _ The template generation system (Chapter Eleven) pasaes information to the link step that,
, 4 for instance, allows verification that every program used the same ¢ompool template.

Another output of each compilation is a Simulation Data File or SDF. This is a random
access data base containing attribute and cross reference information for variables and code

blocks. Data concerning executable statements is also included, as well at global statistics
found in the primary listing, It it this large database that allows for many poctt-compilation
analysis tools, ranging from execution-time debuglers to HALSTAT, a statistics and analysis

'g packale.

B.2 Appendix B

Programmer3havemanymodesof executionavailableto themin mostimplementations
of HAL/S. Even running stand.alone (on a host computer) one can obtain detailed error
diagnostics related direc,ly to the HAL/Ssource by statement numberand block name,and
optionally obtain an end of run formatted dump of all variables.And if a program termi-
nates abnormally, a full traceback,showing the flow of control from block to block, will be
given. Another packageallows one to requestdumps and traces of variableswhile runningin
a batch environment. This packagecan also provide adetailed log of real-timetransactions,
showirqgthe transitions from processto process.Moreover,certain implementations provide
the capability of "functional simulation." or ESIM, of another target computer. In this
usage, the amount of memory used is approximatedby allocatintf_ariables in the _ame fash- -_
ion as on the target machine. Also. the extent of CPU utilization ;s esgimatedfor the target
machine with a running accumulation of time maintained automatically. The FSIMfacility
is very useful in cases where the target machine is not commonly availableor is difficult to

use. One very valuable feature availableunder FSIM is the "profile" capability: a listing can
be generated which shows the numbcJ of tim,.,seach HAL/S statement ill the programcom-

a plex was executed. The estimated total execution time for each statement, and other statis-
tics, allow the efficiency of prolrams written in HAL/S to be a(tacked at the point of
greatest leverage, o

One host computer contains an interactive HAL/Sdebulger. This programuses informa-
tion from the simulation data filet as well as "hooks" inserted in the machine code to allow
debui_ng at the HAL/S level (i.e., without knowing an,)' details of the underlyin| com-
puter). Breakpoints can be set by statement number or label. For instance, "AT LOOP+ 3;"
sets a breakpoint three HAL/S statements after the label "LOOP". Variables can be
inspected and modified by their symbolic _traes; all values age entered or presentedm the
stam_.rd external format. Data aggregatesmay be subscripted or printed in entirety. Since
the SDFa contain full type information, there is no need to _ebug in hexadecimal or octal,
or to continually specify display formats. Since HALLSprograms reference variables via
soaping rules, this debuggerprovides a SCOPEcommand. TI_ command hasa block name
as its aqgument: references to variables in subsequent cummands age interpreted as they
would be in the named block. A SCOPE _.ommandis automatically performed when a
breakpoint is re_ched;thus commands at a breakpoint can referen,-e any variable that is
visible from the block in which the breakpoint was hit. The SDFs contain sufficient
lnfomtation to allow timtlar capabilities in a "croas-debua_r" to test actual flight code.

The laqle amount of data contained in the compiler's outputs, espy the SDF's and
the object modules, permits the development of many post-compilation analysis prolwams.
Pevhsps the best known of these is the HALSTATprogram, which is used to accumulate
giohel data about a pmltnua complex. HALSTAT performs thlx,e major functions: verifying
the consistency of SDF's, printing statistics for each module, and givinga gio:_aldictionary
of variables.SDF's are consistent if a)l variablestheged by processes are in aareement with

t'mpectto such facton as data tyl_, tize, location, and to on. Variables_ ulao checked on
a giobal basisto insurethat nonearereferencedthat haveno, ,vetbeen_._J; if this_tu-

: talon occurs a warningmemqe will he siren. Multitudinous statistics are printed for each
HAL moduJein the pmliramcomplex, 8tying the name of the module mui the date of com-
piJstion, size statistics, am* the modules' pattern b_th in terms of FUt_L/Sblocks incorpo.

,K rated and location of code sectiom. The Idol_dsymix,t directory (GSD) pot,alan of HAL.
STAT is a Ilatimlof every variableusedin everymoduleat the _ complex, lncludh4

1980004512-275

.4ppcndl_t B &3

both compool and local variables. It shows not only variable attributes and Iocation._. but
also the cro_ reference data for each variable arrojs all m+_ ;ul,_ m which it 1,_u.+ed The

cross rt'ference shows both the HAL/S _tatements. by number, where an item is used, and

also the way in which it is uwd. e.g. REFERENCFW), ASSI(;NF, D. SUBSCRIPT. etc.

Additional programt have been developed to meet the needs of ,,peclfi¢ Installations.

One program provides a complete disassembly li,_tmg of a HAL/S load module, which shows

clearly the relationships between the machine code instructions and the HAL/S source.

Since the typical program complex's load module incorporates code from both HAL/S mod-

ules and a_wmbly lantmalCe modules I from the runttme hbrary), a list showint¢ both of these

is e,_wntial to review the integrated syttem. Another program provides the above disa,_em-

hly capability but limits it to user-specified machine inttructions, a facility that is very use-

ful in assessing the impact of instructions that are riot correctly implemented in a machine's

hardware, or in determininl¢ the extent and nature of operating _y_tem interfaces. There i_

also a program which produces a Iht of all I_caliont deemed to be invariant After executing

= the load module for a period of time. one can dump the contents of memory and we .;

tbese "ncver<hanBng "° memory locations have indeed cl,_nged, which would indicate a

problem in the load module. Another program n used to compile, based upon programmer

tpecification of the data item=t desired, a list of all parameten that will be patched. This list

includes detailed information about each variable, such as type, size. and location, to allow
it to be modified in the correct fashion.

As more inttallarions uw HAL/S on an ever.|rowinl number of target machines, the

amount and diversity of the support software is certain to grow. The capabilities de_ribed

here may and may not be prewnt in a particular _ystem. but like the |IAL/S compiler itself.

theu: utilities are written in a high order language, and zs machine-independently as pouibl¢.

The functional simulation and post-_.t,mpilation analysh tools have proved so valuable in the

Space Shuttle program tl,_t they may eventually become required components of any

HAL/S compiler system.

j 0

.... *.... ,+ + _) ' _' I

1980004512-276

Apl_nd.xC C.I ,_. .;

?

AppendixC: Awwersto F_m,dmm

SotluUmm

2.1A

_. a) valid, ide-_tifler

b) valid,keyword

¢) invalid

d) va|Jd,literal

e) valid, identifier

D invalid

|) vaJJd,identifier

h) valid,k_word

• i) invalid

j) _'.._id,keyv,ord

k) invalid

I) _4Ud, ldenllfJer

m) valid, literal

2.2A

a) A X+B Y*C Z

b) (A+B)/C + D/(E+F)

; "*iN- I)/(2" *N - l)

0 I Oe*Xo"Y

• a" aP /,) (lO,,X)eey

h) ((VW)/(V.V)) V

,s"

t

0

1980004512-277

C-2 ..IppL'ndt). (_,

2.2B

_. a "*' is no; tile multiplication operator in tlAL/S,

; Corrccl expression M X+B.

bt Incorrect operator precedence.
!,

Correct expre._ion. 2 IX+ I I.

c) Mullip;icalion is represented by a blank belween two operands,

Correct e_pre_sio,_: X**(2.5 N).

d) TWO oper:ttors may not occur in succession.

Correct expression- C**(--5),

¢_ Spaces denoting multiplication of both numerator and denominator arc missing. !

('orr,','t e_press,on. A C/(B D) or IA (')/IB D).

2.3A

• DFCLARF SCALAR INITIAL(I), X DELTA, Y DELTA:
I)ECLARF TIME I)ELTA S('_LAR CONSTANT(I);
DF('LARF DELAY _FACTOR SCAL,_R CONSTANT(5):

DE('I.ARF SCALAR, TEMPI, TEMP2, TEMP3, *
DECLARE COUNT INTEGER INITIAL(I);

I))_('LARE POINT A VECTOR,
I)F('LARE ORIt,IN VECTOR ('ONSTANT(O,O,O_;
DI-CLARF TRANSFORM MATRIX INITIAl.! I,O,O.O,l.O,O,O,l);

2A

rl ROOTS:
el I_vOGRAH; ._
N DEC:tARE SCALAR,
It l,_ B, C, Roo'rl, ROOT_;
1'1 READ(S) A, B, C;
E ;_ O,S
I1 ROOT- = I-I!i * (B - 4 A C)) / 2 A;
E 2 O.S
M RC_OT2 = 1-1_ - (El - _' A C)) / 2 A;

:.._.:TE(6) ROOT), ROOT2;
II 11 CLOSE ROOTS; ;

J

,4

o"

, r

we

/

$

2;

]9800045]2-278

• 2B

/5 OOIJItCE:
N PROGRAH;
rl DECLARE SCALAR,
tt HE%GHT, _-'
H T%M5 |NTTEAL(O I ;

N HEIGHT ,c 110;
E 1/5
H TZrl5 n (Z HEZC4'IT / 321 ; /u O(X_5 I e/ _;
I1 HEZGHT • .3S H[ZGHT;
E 1/2
It TZM[: T|ME * _ (E HEZGHT / 32) ; /_ BOUflCE 5 m/
I1 HEZGHT : .SS HEZGHT; _,
E 1/_ -;
14 TZlt5 a T][M5 # 5 (_ HEZGHT / SZ) ; /u BOUNCE 3e/
It klRZTS(6) TEHS;
M k_ZTEI6) 4 TZlIE;
.;CLOSE_..CE; i:

• I

N [×=C:

II DECLARE IIASS OF EARTH SCALAR CO_JTANTlS.983E;_?);
H DECLAR[PZ SCALAR CI.NSTANTI 3.11ilS9;_6S Ii;
H DECLARE RADZUS SCALAR ZN'rTZAL(_,O00 1609_14.qJ;,
N DECLARE PERZO0 SCALAR;

5 2 3 O.S
H PEREO0 • (iq plr RADXUS) / IIIASS.OF EARTH 6,67E-0)) |
N k_ZTE(6) PFRZOO;
H CLOSE EXZC;

.o

2D *

• 4 rl SOLUTIOHz
H I_OGRJUll
_t OECLAItE SCALAII i
H Ao Ill C_ OJ I[. 5m Xi YI
11 llEA.O(I) A, |, C, 0, |, 5t
N X" lEO -IF) / lAD - IS Cl;
N Y • (A F - (CI / (A O - B C)|
H kq_lTSll)) Xt Y;

;_ N CLOS5 SOLUTIOH;

!

o _

N,

]9800045]2-279

l

(" 4 ,4ppcnJil ("

Solutio.s '_
L

.I. IA :_

a l hllclcr, v_llil" is I,

I_1 M_lrix 1.1I_y.11,v.lhlc is ; 5

,') s..vcvlor, vahiclS [I] g

,t. IB

M TRAN_MUL:
M PRCGgAM;
M DECLARE M MAI"RIX CON_TAI4*T|g, 8, 7b 6, S* 4, 3. _* I|;

M kllTEl61 TRANSPOSEI M I ;

li M CLOSE TPAN. MUL;

J I("

al (l+t'OS (2 X))!2 ..."
L

I_)ARC I'AN(Y/X)

c) M (R I IR)I" I R IX.'IT)SINIPIII) M R Z PIll DO1 tX)S(lqlll

d) ARIXX)S(IM/R M A/N)ISQRr(2 M I:+M**2 A**2/NOO2D

c) [.(}(;('I'AN(._i2+1q/4D

.1.2A

:il I, 7. 0.

<,-,hi

, L'SJ '_
J

•" c) IIFI'I.ARI' VI VF(+I'OIII(_I INIrlAL(O,I,2,.I,4,._); -t.
Ilr('l ARI: V} VI'CrIIRIr,) INITIAI,(IO, I I,I?,I.I,14,1S);
IH:CIAI,(t: M?2 MATRIX(2,2) INITIALIS.h.7.S);
I)I_('IARI: M,t5 MATRIX(.t,5)INITIAL(7,4,1, 2, ._,¢h.l,'J, .1, I_,S,2, I, 4,

p ,

1_, _

,e

t

o

]9800045]2-280

!
Appcwtd_x C C-5

3.2B

This is an example of how over-lpecifying a programmay lead to inefficiency. Two
answers ate given here; the first follows the statement of the problem literelly, while

_ the second produces the sameresult in a different way. i

• I
N COflP 0OT: i

H OECI.JUfl[vl[c'r_, !
rl OiBXG vEc ZNZTXAL(1, t, 3),
14 mI[SULT X; "
fi OlrCt.JRl[Gielr8 IIAT ftATItIX ZNTTlrAL(I, 2, 3, 4, S, 6, ?. 8, 9);

• I[

M RI[SULT..X • a_Xl; VEC . _XO MAT ;
$ 1 **,1

I[- -
N P_SUtT X • OitX6_Vl[C . t_tii IIIAT ;
S l i,!

_1 I[-- -
/t ItESUI.T_X • Ollli Vl[C . ORXG. HAT ;
g 3 e,$

[o
It HRZTi[I 6) R[SULT X;
n CLOSE £OI_P.OOT;

I1 COMP.OOT:
I1 I_0GRAn;
H OECLAmE VI[CTOI,

It OI_ZG1.VI[C INZTZAL(|p Z, 3),
n RESULT_X;
II DECLAItE ORXG_I"MT I'M'reZX ZH3[T][AL|Io I_, 3, 4o S, S,, 7, 6, 9)l
|

/I RESULT X • Oi_ZG VEC _I_XI. HAT;
r *

n ..xvtt, J AlSULV.X;
. N CLOSE CC_tP DOT;

- I
l

.¢"

¢

J

-L

1980004512-281

C._ Appendix ,"

* 3.2C

22
WRITE_6) V41 will output the vector 23

24

[0 !1WRITE(6, M33 will output the matrix 7 8
il 12 I

The secon_ WRITEr6) M22 will output the matrix [0 I]

a 3.5A

i) _-, -, < >. /, ** results scalar.

ii) +, . <>, /, ** results scalar.

iii) +, -, .: >, /, ** results scalar.

iv) +, -, • > results integer:
/, ** results scalar.

v) +, -, * resultsvector:
< > result matrix:

,esult scalar.

vi) < > result vector.

vii) < >, / re,_ults vector.

vtii) < > ,esult vector.

ix) +, -, < > results matrix.

J" _ x) < >, /, ** results matrix.
• 4

3A

n AI_L[$;
H PI_OGllAM|

_; M DECLJUI| +.tCTQR,
M Vl, Vl_;
II . .

•+" M ll|aOI|) Vt* V|I
[....
M HlttTtl(*) lll¢C04JllVl , Vii I (ABVALIVI) ABVALIVP)))I
M CLOSE AN6LES;

r

r

s

+ , +,+_++, + +.... , ,+ • :_

1980004512-282

J

Appendix C C 7

_: 3B

M PROGRAH;

- 11 0ECLARE SCALAR,
H ALPHAv Xl, X_., YI, Y2, _ -
tt PI CONSTANT(3.141S) ; .,
[I I}EAOtS_ XI, Y1;
[t ALPHA a 17 PZ / 180; ":'_
rl X2 • IX1 - S_O00) COS(ALPHA) * {YI - 118000! SIrNIALPHA); %
M YZ : -(X]L - $4000) SZHfALPHA) _ (¥1 " 11B000) COSiALPHA};
It k"_ZTE(6) XZ, Y_;
[t CLOSE TRANS;

Q
3(.'

a) V4 = VEC_OR$4(M$(2.2). M5(3,3). M$(4,4), M$(5,5));

b) M.. : M$(2 TO 3, 8 TO 9);

c) M34 : M$(5 TO 7. 7 TO I0);

d) VlO = M$_9,*);

a

:,¢" _

r #, ". ; ,_. -'

e ';

d,

.o

]9800045]2-283

C.8 .4ppend:x C

Soludons

'_" 4.1A

! a) Compoundconditionslike 'A < B < C' arenot recognizedby HAL/S.

b) The THEN clauseof anIF.. ,THEN., ,ELSEgroupmay not bean IF statement.

c) Theexpressionfollowingthe 'NOT' operatormustbeparenthesized.

4.1B
a) ""

,II
!
I

b) Impossible:the ELSEclauseof C2 branchesintotheELSEclauseof C3.

c) Impossible:the THEN clauseof C2 loopsaround,whichwouldrequire traver_-
intza hneupward.

d)

, a',¢ _ _,__I THEN C2 THEN C3 THEN C4 THEN A2

._.

elf_

i,

c

1980004512-284

Appendix C C-9

4.1C

a) Not satisfied.

b) Illegal. The correct syntax is NOT >.

c) Satisfied.

d) Satisfied.

e) Illegal. Vector comparisons must involve subscripting.

f) Not satisfied.

8) IA> B)&(A<C)

h) {V -1 = S) & ((C > =D) kD = 4))

s 4.1D

IF W < L THEN SQ = 0;

ELSE IF W > L THEN SQ = 0;

ELSE SQ = !:
AKEA = W L;
IF SQ = 0 THEN WRITE({,) 'NO SOUARE':
ELSE IF AREA <: 4 THEN WRITE(0) 'SMALL SQUARE';

ELSE WRITE(6) 'LARGE SQUARE';

4':"1]

The original code was over 300 state-
I while the code is aboutments, new

{ 160 statements.

I This change can be made in a valid
HAL/S program: group C is removed

I entirely from the IF statement, which

L] J now consists only of the section of
the flow chart lying within the dotted

j" _ rectangle.
,4

,_,.r

it. °._'"

A i

]9800045]2-285

C.lO Appcn,tlx C

Note that thisflowchart:

[--@-
E,-1

does represent a shorter programthan the original, though it cannot be translated
into a valid HALLSprof,ram,as this would require branchinginto the ELSE clause

I of the condition, which is not legal in HAL/S.

• 4.2B

11 50LUTZOt_': :_
PI PROGRAM;
M OECLMIE SCALAR,
It A, B, ¢, O, [, F, X, Y;
M REAOI$) A, I_, C* O, [* l;
II IF (A 0 * 8 C) • 0 THEN
M k'RITEik) *HQ Sf_LUTIOI4 |XIST$';
11 ELSE
II 00; "

II Xs IEO'I) F)/|&O'8¢);
M Y • IA F - E ¢) / _a O - B C);
I1 I_ITflt,) X, ¥;
n ENO;
"I CLOSE SQLUT_{CNt

4.2C

It
., #

• I iF Y < X THEN DO:
IF ¥ < X - _.THEN Y = ¥ + I;

ELSE Y - Y - I;
END',
ELSE IF Y > X + I THEN X - X -- I,
ELSE X = X + I,

V' "

i,

]

) /"

1980004512-286

Appendtx C C-ll

f 4.2D

a) The line from C4 to C represents a branch into the ELSE clause of C3, which is

illegal in HAL/&

b) The following flowchart removes the difficulty without making any change iq

the order of execution of any statements:

T
-- f

a" _ iF CI THEN DO;

• 4 IF C3 THEN D;

ELSE C;

END;

ELSE IF C2 THEN DO;

IF C4 THEN C;

l. END;

ELSE A;

1980004512-287

C-12 Acpcnd_ C

c) If the flowchart had been structured, it wou.d have been awkward even to draw

°', lines from both C3 and C4 to C, and the fact that there was an illegal construct
: in the flowchart would have been obvious. To illustrate:

THEN

$

4.2E There are fevera] pomdblezolutions, one of which it liven here.

_EN

• , r-7
EI__HEN

)

'_'.it" I

'.4[,Ill
It I

1980004512-288

Appcndtx (" C.13

: ItAL/S code to implement the revised flowchart would be:

IF (CI AND (NO1 C3)) OR (NOT CI AND ('2 AND C4) THEN (',
FLSE IF ('1 TltEN D;
ELSE IF qC2 TIIEN A',

4.3A

a) Retatnonal expression, not satisfied.

b) Boolean expression, false.

c) Relational expression, satisfied.

d) Illeilal.

e) Illegal.

f) Relational exprcmion, satisfied
6

II) Boolean exprt'l,.sion, false.

4.4A

DO CASE I + I;
ELSE SCRAMBLE = 3;
SCRAMBLE = 4;

SCRAMBLE = O,
SCRAMBLE ,, 5;
SCRAMBLF - 3;

SCRAMBLE = I;
SCRAMBLE - _"

END,

,v it

, r

1980004512-289

C.14 Appcndtx C

SobtJo_

5.1A

SinceIhe loopconlrolvariableb an inleller,while Ihe incremenlb the scslervslue
•I. on eachilemlion I willbeadded!o. I, the resultlflj I. I willberoundedIo !, and
theconL,'ol_arbblewill neverchange.Tirol is to say.the loopwill neverlerminale,
sothequestionisunanswerable.

$.lB

DECLARE V VECTOR(5)..
DECLARE NEG PART INTEGER;
DO FC_ NEG_PART -, 5 TO ! BY -I;

IF VSNEG_PART < 0 THEN EXIT;
END;

s Nole lha! if no ¢omponenlof _ is neplive, NEG_PART will equalzeroupo_exil
from theloop.

5,1C

N is equal to 14 on exit from the IooN, beClUS_bl DO FOR I = I TO N BY 2. N is
evaluatedonlyoqce.uponentry to the I_p. whenitsvalueb 9. The,loopwill Ihene-
fo_ beexecutedfivetimes,IcavinllN equadto 14.

$.ID

a) The o,,,_- _Jtllm the value.2 to Ill the elements of A.

b)

DG'FOR X = I TO _;
DO FOR Y _' I TO 5;

AS(X,Y) • .2;
END;

END;

$4

'at

7_ ,°

; L
i.
v:

B _

]9800045]2-290

APl:,rndlx C ('./_

5._A

a) The prOlPam will write the values:

2 INITIAL VALVE

4 INITIAL VALUE

8 INITIAL VALUE

16 INITIAL VALUE

b) DO FOR X " I T_ 4;
N • _ bl

WR|T_6) _;
END;

_epouibil_ty;

DO Ff_R X " : TO 4;

s WRITEqb) 2*'N;
END;

is another, and clearly thege are many others.

5.3A

DECLARE V VECTOR(5);
DECLARE NEG PART INTEGER;

IX) FOR NEG PART = I TO 5 WHILE VSNEG PART > = O:
END;
IF NEG PART 5 THEN NEG_PART m O,

5.4A

If V$1 - O, the code shown will not exit with NEG_PART • I, as it should. Th!s
o_¢utl bc_auJe the UNTIL clau_e w31 not be evaluated for the first ',me until 2 has

t been amlmed to NEG _PART in the DO FOR loop.

,4

5._A

ap II-,X_lOI

b} X- IOI

• r t, ,.

1980004512-291

C.16 Appcndlx C _

For this solution, we take the originalDELTA to be FINAL-INITIAL,and assume
that INITIAL< FINAL. 5

t

JIMPSON:
M PgO&I_AM;
M DEDIJOIE SCAI.AII,

M INITIAL.VALUE, FZNAL.VALUI[, OLD_APPltOX, NI[N_API_0X, POINT; "
h DECLARE SeALIJi,
M DELTA, EPSELON; "

H OLD APPROX, HEILAPFROX = O;
H IIEAO(S) INITIAL._tLUE, FIH,_,L.VALUE, EPS][LON; •

M DELTA • (FINAL__ALUE - INITIAL_VALUE! / S; _.
h O0 Or|TEL (HEW_API_OX * OLD,API_OX; < EPSZIJ_,i;

I1 OLD.APPROX z HEH,,.API_OX; ,.
I1 HEI__APP_QX • SqRT{ I'HITIAL VALUE) * SORT(FIHAL...VALU[; ;

j M DO FOR _'_QIHT • IHZTZAL.VALUI[* DELTA TO FIHAL. VALUE * {DELTA / _) BY DELTA;
h HEW..APFROX • HEH APPROX _* E SqRT(FOIHT);
H END;

h HEN AFI_.OX • H[H API_OX DELTA / _*;
M DELTA • DELTA / Z;
M END;

M k_ZTE(&) HEH.APPROX;
I1 CLOSE SIMFS4_;

5B

a) This program admittedly _ inefficient one, will printall primenumben from 3
through499,

b) A solution that does not change the computations performedis:

t

_ ! H IRTTID:

_1 • 11 ; H PROSRAH; ;.
M DECLARE INTESEII,

IS DO FO_ HU_EI • 3 TO ADq);
IS DO FOil OZVZOEa • E TO HUII_EII - 11
H ZF rtOOIHUtQEII, DIVIDER) • 0 THEN
IS EXIT;

; IS [NO; _.
_" _ IS IF OZVZO[il t NUItBEi_ THEN

I1 k_RETE(i) HUflBEm;
', IS 1140;

-* _ IS CLOSE IITTIlII;

e

_ i

:-,¢ i
',.. ! -

_,¢"" i

}?

]9800045]2-292

t

Apprndtx ¢ C-17 1

S_utiom

6.1A

a) Illegal. X is set to 3, but a variable with the INITIAL attribute is not considered ti

to be computable at compile time, so the declaration of LIST_ONE is errone- +_ t ?
OUS•

b) Legal. LIST ONE is an array of 4 scalars, value (.2,.2,.2,.2). LIST_TWO is an
array of 4 integers, values unknown• :_

+

c) Legal• LIST_THREE is an array of 18 scalars, value _(.I ,.i,. i,.i ,.i,.i,. i,.i,. I, I,?,?,?,?,?,?,?,?,).

d) Legal• LIST_FOUR is a 9 by 3 array of 27 scalars, value _ ::

(i ' ' 2 2 !) +• ..' .2 ? ? ? ? ? ._

+
e) Illegal. The ARRAY specification must precede the type specification. _

6.1B ._
+
t

a) rt I[XI[IICZS|.!: :_

:iM OI[CLA_I[H _IATRIXlS, all
H 0_CI.AR[TZrI[ARRAY[100) SCALAR TNZTZAL|0);
I1 DECLARE SCALAm ZHZTZAL(0),

H TflZN, TflAX, TI4EAH, SUN.OF_SQUARES, STAH_OEV;
I1 0EC LAI_[XHTEGER,
14 Z, J, K;

rt O0 FOI_ Z a I 'TO 'tO0;
H O0 FOg J a I TO S;
I1 00 POre K • I TO S; _

H N • IIJU_OCM; ,_+

S J,KH EIQ;

H |hl3; :iiH TII_ • IIUNTIIII[;

•a 0 s I ,+

It TZrtl[• llUHTZt_- T2?II[;
S Z X +_.

fl EgO; ,_

C HOg PIIOClrSS lrg| HUNmlrO-SMIPLES TN THI[aRRAY [TIME]

fl T_AX, 1141[_N, THIN • TIM[! _i

_.. a 1

+

-__ •

+

,¢! i
+ i .

+

+/.

.J

}

+i-

1980004512-293

-_ ri O0 FOI I • 2 1.O 1_0;
H T_**!_i• TriEAN * TZtll ;
S I

M if TI_[• _ iit[li
s i { -7

H TIr_X s TZril[;

ri ZF TIM[• TitZN '[HEN
S I

H 1.MIN • Til_[;

M |NO;
n TitEAN • 73_AN # 100;

C ¢OitP_T|STilliOillO OI[VIATIOIt
I C

it SUN_Of IqUlli5 * 0; _.
it OS FOS I • I TO 100;

t ! _.
It SUri Ct SiiuAqEs II SUIl_Oll SllAilt$ * ITll_ - TriiJU_l i
S i "*

N Eke;
it STIH.OI[V • SOSTtiUIt_O/_SIJilI|$ *' 100);
M kqllZ1.[{il "it|N • 'l Tit|N, ' itlAN • ', 'nqiANI * MAX • 'l TitiX, ' S1.ANDAIID0_V|ATZON • *l STAH 01IV;
H CLOSI[SXl[l_CISl[.i;

b)

it [)lille IS[_2 *.
it PlloGqAri;
11 DECLAI[ri ItllllZXlSl |l;
it OECLAPE1.1HESCALA INITIALI0);
it Ol[Cl.Al_[SCALARIHI.zALiO),
it TMZH, YriiX, _[AH. SlJIIOF SilUAWES,S1._14OiV;
it OECLAA[|it1.tG[lt,
it][. _* K;
II T_l[J)4_S_I.OY S=_AIIES • O;
it TtIAX t .|; /w I.[$S lqAN Ak"i POSS|BL[1.1.[VALUI[•
it Titlkl • 1000; /_ GI_EATEBTHAN Ak11.FEASIOL[1.|_1[VALUE•
it O0 FOS I • I 1'0 100;
q O0 F J s i 1.0 $;

• ' if it _ F_ K : I TO S;
1t • r i' "Off;

• dr s J.K

" II GilD;

it Til_[• ll_Irll[i
• I *

I1 Tlril • IUiIil_! - 1.litSI
it TIIIAN • TFRI * Tlritl '_
I[Z
it I_qt.0f l_Jki[S • lUIl.O__SqUilli3 * I1.1ti i
it tl 1.1_[I 1.1¢1:_:Iril_4
II iriAX • llrili

'" It II llrll • lill. Y_ll
II Trill • 1.1rill _"

; it liiOi
it ilt[lil I lillllri / lOSl
I I
M llitt.OlV • IQSTIISUIt_Of.lqRiAlll # IOOI - 1._111Hli
ri kSZlliil '111N • ', Trill, ' itliit I ', "lMiiit, " itAl I ', litAX, ' STANOILI9 OlVli1.ll • ', |TIiI.OIVI '
#I CLOSEtgillCl_(.li

,,,

1980004512-294

"r

J

A.c)pend;_: C ('.1# _

6.1C
II E×AHPL[2:
M PROGRAM; _

M OECLARE G_rgO ZNPUI" ARRAYf IZ) ZNTEGER IHIIIAL(O) ;
H UECLARE ATT RATE ARRAY(lZ) SCALAR;
I1 DECLARE SCALE ARRAy($! COHSTANT(.01.3, .026, .02));
M DECLARE BXAS SCALAR TtJZTIAL(S7. 296) ; [:
fl DO FOR TEMrORARY Z : 0 TO 9 BY 3; "
fl DO FOR' TEMPORARY J • I TO 3;

• _d_" MS ATT RATEE,j s GYRO][Hl:X/rz_j SCALEj t BEAS; /
¢

J
M El4);
M ENO;

M CLOSE EXAMPLE Z;

(), I |) 11 EXAMPLE 4A:
M ?RC3RAM;

fl DECLARE A ARRAY(S) SCALAR;
M DECLARE TEMP SCALAR;
M TEMP : A ;

4 S S

M DO FOR TEMPORAIIY T : 4 TO 1 BY -1 ;
rl A :A ;
S T*I T

M A • TEMP;
S 1

n CLOSEEX_PI.[_,*A;

_.ZA

a) L_'gal k) Legal

b) Illegal I) Illegal

c) Legal m) Illegal

d) Legal n) Legal

e) Legal o) Illegal

j" $ 0 Illegal p) Legal

• dr g) Legal q) Legal

h) Legal r) Legal

"_ i) Illegal s) Legal
° j) Legal t) Illegal

6.2B

A single arrayed statement takes the place of one or more loops and a statement to
perform the _me operation on each array element that the arrayed statement per- :"
forms on the entire array. If the programmer writes these loops, loop variables must
be d_,clared, correct loop limits must be coded, and such ;."_ns must he nested it"the

.¢, array is of two or more dimensions•This meansextra work for the programmer, and f

_o"

r

•,;,_ •
¢

1980004512-295

i t

C,20 .4pl_ndL_ C !

more complicatedandpotentiallyincorrector unreadablecode.If anarrayedslate-
ment is coded, the compiler does tile bookkeeping, and may even be able to produce
more efficient c_le, since loop variableswill not need t,, be savedfor later reference, i '.

6.3A

' ([!!"!i][i'!][i:!])X = .I ' _ 4'
.I '_ '_ I

_' [!i][!:][zi]!, ,

'-([ii][i'],,[i:],[i][i][i][i][i][!]/
&3R

S = X$13;I,3);

S = Y$(3.1:3);

3 = Z$(7:3);

S - A$21;

6.3C

, • MS(I,2TO 4) = XS(2:3,*); 1

M$(1,5 TO 7) = X$(3:1,*); J fromXM$(I,8) - X$(3:2,1);

M$(1.2'fO4) - Y$(2,3:*); I ' :

M$(I,5 TO 7) = Y$(3,1:*); J fromY iMS(1.8) - Y$(3,2:1);

M$(I,2 TO 4) = Z$(6:*);)

M$(I,S TO 7) - Z$(7:*); I front Z,' M$(I,8) " Z$(8:1); _'

: M$(I,2 TO 8) • A$(16 TO 22);

,i

T
o,

1980004512-296

e ApprnJtx (" ('121

fs.3.1A

M PROGRAM;
M R[_LIC[LIMIT II'l "100'*; ir
M OECLAR[PRIM[ARRAYILIMZT) BOOLEAN TNZTIAL(TRUf); -'
H DO FO_ T[MPORAIIY Z • 2 TO LIMIT;

H IF PRIME THEN

S I: _,'

II DO;
M DO FO_ T[MPO_ART J = Z I TO LIMIT BY Z;

M P_IM[= FAL5[;
S J: ,

M kqZT|(6) Z;

M ClO$1 FRlr_[I;

O.4.1A

DE('L,_RI:. TEMP VECTOR(27):

TEMP = VECTOR$27(X);
M$(I,2 TO 8) : TEMP$(Io TO 22):

TEMP : VECTORS27(Y):
M$(I,2 TO 8) : TEMPS(16 TO 22);

TI_MP = VECTOR$27(Z);

¢ M$(I,2 TO 8) = TEMP$(Ib TO 22);

The assignment flom A is already quite simple.

C.22 Apl_ndot C

6.4.1B

a) ARRAY(2,3)INTEGER: I _ 3
11 23 I

b) ARRAY(12)INTEGER: 11 2 3 I 2 3 I 2 3 I 2 3)

c) ARRAY(3) SCALAR: (.I .! .I)

123123
d) ARRAY(2,6)INTEGER: (I 2 3 I 2 3)

MATRIX(3,3): . I
.1

VECTOR(6):

6A

i'l MEDIAN:

M O!Cktll[:',_IG|I,
M x, T|_P, SMALLEST;
M O|¢LAII[VALU|.LIST ARIIAY(f.S_ INT_SI[It INIT|AL¢?6, 67. 6S, I_, 43, $_, Z|, 12, 23* 34, _S, b, 67,
rt 73, 1:3, =l_, 3_S, 4Sq), Sb?, t?8, 7e% SeO, _167. tt76. 76S1;

O0 WC_ X • I TO 151
fl $_LL|ST • X;

N IF VALUE_LIST ¢ VAL;JI[LIST T)fl[N
S J SMAkL|$T

M SIqtLLEST • J;
n itch;
II IF SMAkLEIT .I X TWIN
n oo;
Pt TI71P • VAL_._IIT I
S S/1ALLIST

N VALUI.L||T • VALUG.LI|T ;

; | S S_LLEST X

d _ _ V4LU|.LISTx • T[flP;

M INO;

r_ kll|T|16i 'NIOIAN • ', VALUt LIlT ;
• |3

H CLUE HEOlIN r,

|

,J,

1980004512-298

Appcadlx C ('.23

OBL

DECLARE TIMING DATA ARRAY(4.26) INTEGER INITIAL(0):

DECLARE I INTEGER:

DO'FOR I = I FO 25;
TIMING DATA$(I [O 3,1) = TIME VALUES$(*,I);
TIMING DATA$(4,1) = SUM(TIM_VALUESS(*.ID.

END:
DO FOR I = I TO 3:

TIMING DATA$(I,26) -- SUM(TIM VALUES$(I,*));
j END;

4

_o

r 1° "..

r

1980004512-299

£'.24 Appcnd_ ¢

Solutions

7.1A

2 J

4

/ 7.1B

line 3: the variable Y is known only within the scope of function PROC ! ,'r"

line 6: Function PROC! cannot revoke itself

line 7: PROC2 has not been declared or u_gned.

7.1C
Block: May be _voked from blocklsJ:

2 1,3,4,5,6 _

a 3 1,2

4 3,$,6

5 3,4

6 $

7.2A

Move the code block defining ALMOST_EQUAL from the end of the prolrm_ to s
point before ALMOST_EQUAL is invoked; i.e., immediately before or after the
blockMASS.

7.2B

s. The function RANDOM returns a scalar X with uniform distribl.tion in the range :,
O_ × < I. The function ROLL uses the implicit scalar-to-inteller conversion sup-
plied by HAL/S, with implied roundinl, its results may be described by s table:

a nmdom _an in the nmlP: yields an amount of:

, a O_ X <.1 I

_ .1_ X <.3 2

.3_ X <.$ 3

:_ .$(X <.7 4

.7_ X <.9 $

: .9_ X <I 6

Thus, it is clear that the probabilities that ROLL will return I and 6 are 1/10,
while the probabilities of 2,3,4, and $ are I/$.

J ,

_'' _"

l,

1980004512-300

..... o

Apptndlx C C.J_

b.

II PIX.ifOLL:
II PROGmAHi
/1 DECLARE COUNT |NT|GI[m Zl4ZTZAL(0);
rl 01[CLARI[I ZNT[G|R;

;_ H ROLL:
fl FUNCTION ZHT|61[lt 1
H i|Tt_N TRU_ATI[I6 W_ • |l;
II CLOSE;
It O0 F_ Z 8 I TOS;
II O0 UNTIL ROLL • ROLL • 7;
n COUNT • ¢GUHT * 1;
M |NO!

END;
11 kWZTI[i t) COUNT;
/I CLOSE FZX.ROLL!

J 7.2C

II FTN0.0COS:
II IqtOmAH;
H OI[¢LAR| JIlmAY||) XNTIrGLql,
R X, Y!
H O|¢L_lr Z IHTI[GEII;
II iCI):
It fUNCTXoNcn. Zt) _rTtlRR;
15 OICLARI ZNTl[li_q,
I1 11, II, X, Y, Ri
M X • III
Ill yI I11
15 OO IIIIUI X -I II
fl I • RLN][NO|R|Yt X)t
fl YSXl
Ill X I I1|
N 114111
I1 fflYlDN AllS(Y) |
II ¢LOII ICOI
n RlJltlSl IXl. lYll
15 DO FOIl I • I TO II
II IF RCOIX, Y I -_ I TI41N ',
I l I

• t
M lll_Plr'llil X t Y , ll¢O(X * Y)l

, I l l I I +

N 11OI
II ILO/I[FX1MO.KDII !

: I

• ¢

_,-'

e

f-

]9800045]2-:30]

('-26 Apptnd_ C

: 73A

M FIXmOLL:

fl DI[CLMII[COLIf_ ZNT|I|II ZNIT|AL(O);
I1 O[CLdlr ZNTI[GI[I,
n Z, IIOLLI, lOLL21
It IIOLL:
fl PIIOCI[OUI! A$$XGNIA) ;
H O|¢LAIll A IHT[8[II
n A • TmUNCAT|(6 IIIANDaq* |)|
I1 CLOSEIfOLLI
n DO FOIl Z • Z TO $t
I1 OOUNTIL IIOLLI ,o IIOLLZ • 7t
II COUNT• COUNT* 1;
n CALL lOLL AS$|W4tlBOLLI}!
M CALL lOLL ASSIIIN(IIOLL21|
n END;
n 11¢0;
N tmlTl| 11 CnUNT;
I1 CLOSEf IX_DOLLi

I

The solution in wP;ch ROLL is a function i_ clearly prefen_le, because the code to

invoke ROLL is much simpler in that case.

In general, when a block is to produce a_ output a sinlJe value of any HAL/S type,
the FUNCTION form will tend to produce more comprehensible code than the

PROCEDURE form. This is bccanse the calling sequence for a function minors

closely the mathematical notation for a function, and because often (as in tl_ ex-

ample) use of the functional form avoids the introduction of "dummy" variables
with no intrinsic mcaninll to the allorithm beinl implemented. In the p_'ocedur¢

form, these dummy variables must b¢ used as ASSIGN parameters

¢

_4

1980004512-302

:" Appcnd_ C #,'.27 •

: 7A
_L _

m IqIG_RAHI

n Olrl:LLgl IEAL.MB,

n _. TZHI ,, DOUNC| .."IIit
01ICLJLItll SC,ALAll |HITI&L¢i)I.

n Tllnl, HC_lZ.OISIT I _*
II O|¢LAJI| N||_T IC*LAJI I#IT|&U|I|)!

fl I_IICLAIIll HIIIIIZollII||0 ¢ONSTAN'lrllb)|
rl OI[¢UUI| I CONST,UIT¢_)!
15 OI¢I.JUI[I INTIIIlll

II IIIPI.JIII NUIQII.Of.IKIUHCll IT "11_t
M TIIII._II.IIICIP t
II FUICTIIN(NI t -
II OlCL_I N ICilJWi
1t IlllTUm4 IICIIT411 N / Ill|
/q CLOII T Ir41.TO.OIIQP i

• n HOIIIl r_l?IClNz
It III¢_*IOUIII T) AI|IIII_ N | l
H II¢lJIJll ICA I.JUII,
T, Hi

II N • N * IKIIII.IPlII TI _*
n ClOS[,_llll. nOTICN;
n II0_¢11,
It IIIO¢!11_.q1111AII_IIIN(_, TII
11 II¢l,Jlll ICll.ll,

#, TI

II M • .711 Hi
H 5' • Ilqlrlrll N / Illi

CUll I(IUNCI _

!I ClO Pill I • I TO NUIIIII.OF.ICIUlilllli :_
II INII_ Tlfl_ • TIIqI.TO.IIIHIfINIIIINTIi
H CALl. HCIIII_IIO_IINIIlilQ_.TtI_ I AIIIIMN_IIII.IIII) I
II TII_ • TIt1 * OlIOP.TIFIII
tt IITll61 *ilOUI4111** 1, *71111', ?I1_* 'IKIIIICINTAL IIIIPLAIIIIINT** I_IIII_IIITi
H Ill, It, IIUNlll /IIIIIN4MIII4T* II¢IIJICI.TIHI II
¢A_L HIIII_IIlI/ICINOKIUHCI.TIIII) RJIIIIII_NIII_IIIT Ii
M TIIII • TIFII * IIOUN¢I_Tlnll
n I1140;
n ¢LOM IIIPi

,,," :'.'/

i :

]9800045]2-:303

C.28 Apptncl_ C"

7B

M SZm'S_*.'
fl MO_mAM ;
I1 Ol[CL_II[SCALAI,

n |H_T|&L.VALU([, FENAL.VALI_q_t, OL0.APIqlOX. _14 APPI_X, POZNT;
H 9ECLUlI[KALJt,
11 DIILTA, EPSZL_, A, II, ¢, O|
M POLY :

R i_U_CTIONI X) 1CA Lkl;
II OECLAO| X SCALAR;
|) 2
;I II[TUImA X * I) X * ¢ X* O;
n CLOSE I_OLV;

n 0L0.API_0X, MiM J,lmlOX s |;
n lEAD'S) &, I, C, O, |N|TZAL.VALUt, F|NAL VALUg, [IISTLON;
11 GI[LT& • IIr|NAL V&LI.q[* IPI|T|AL.VALUI[) / S;
II 00 UNTZL IHtl4.iPlql0x - 0LO APIHIOX) • EPSIL_N;
n OU_ sPlmOx s)R;4 &Pn0x;

4 R fiI[M.&I;POOX • _LYt ZN|T|&L..VA_,.UE) * POLY¢ PXNAL.V&LUt);
11 00 FOre PO|NT • XNZT|AL VALUI[* O[_TA TO FXHAL.VALUt * IOEL(A / El |V DELTA;
11 N_M &liPlf_ •)q[u APPIIOX • | POLYiPO|t4T)|
11 11401

11 N[14 IPPIleX • NtM.IPPIC_ DELTA I l;
11 O|LTA • C|LTA / l;
It IHO;

11 laXTlC*))q[M utr_x:
11 CLOSE S:[m_JON;

1980004512-304

,; AppcndtJ C C:29 ,_

i 7C

_ _ DROP:
_" H PROGRAM;

M D_OP.T:I4E, BOUI4CE_T:111_;
_- It DECLARE SCALAR]_NZT]:ALiO)p

/1 TZttE, H_RIZ.DIST ;
' M DECLARE HEIGHT SCALAR |NITZAL(IlO); *,

H OECLARE 11OR1Z.SP[EO CO ,STANT(,);
H DECLARE G C_;STANT(32 !;

_- _ H DECLARE | ;NTEGER;
/I RF.PLACE HU/',BEI_.OF I_UNr.[S BY "I0";
N T]_MF TO DROP:
N FIAICTION_ H);
I1 DECLARE 11 SCAt.AR;
11 RI[TL'_H $ORTI_t H / G_;

H CLOSE TIME TO,DROP;
I1 l_UHCE:
I1 PROCEDURE ASSIGN(liD T);
H [_ECLARI_ SCALAR,

l I1 11, T; 4
/1 14 z ,7S Hi ":
/I T : SQRT(t 11 / Ol;
I1 CLOSE BOUNCE;

N DO FOR I a 1 TO HIJ_BI[R OF I_,_Cl[S - 1;
11 DROP.TIME • T]ItlE TO.DItORIHEZGHT);
It 110RZZ_OIST z HORIZ DZST _ 11OR]rZ.SPE[D OROP.TIrME|
N T][tlE • TIME * DROP TitlE;
11 k_ITE(6) *BOU_E'_ Z, 'TitlE*, TitlE, *11_'XZOHTAL DZSPLACEHI[NT', HGI_ZZ..DZST;
It CALL BOUt;CE ,,SSIGN(11E]'GHT, BOUt_E TIME);
H 110RIZ.DIST z HCRIZ.DZST * HORZZ_SPEEO BOUtiCE TitlE;

: fl TIME z TTME * 801J_rcE TZtlEi
M ENO;

' N OROR.T][11E I= TZtlE.TO.DROPIHEZGHT)_,
II HORIZ..DIST : 110RI"Z DIST • 110RIZ.SPEEO DROP..TZHE;
I1 TZ_IE s Title _ OROP TZ11E;
H I,_ZTE(6) 'BOUNCE', Z, 'TitlE' _ TIbEt '110RZZOHTAL DISPLACENENT', 110RIZ.DZST;

i I1 CLOSE DROP;
*.

:L ,_

2 _

1

r

] 9800045] 2-305

¢' ,¢(1 4pl_ntlll ('

2

,_o|111|o11_

|} It .,,evcr_11,'h,,11111_,|,__iI-_,11111,_,K|vHI_ Ihf'111dc,_¢rtl_tlv_'11_1111_,.,111_k_,,,i! ch,_11-_,r
_|t_I ,,111¥pa1"11_'t1|,,,11'| (I '_I_|I_'I11¢111I,_dOlllIl.,

1111__II I _ _,I_I¢111¢111,_Io be Io1111d,111i¢kI_:I11dp_1,_Ily,

¢11_111_'d_,11_'¢.111lh_, RI'PI ,'It'|: ,,I_II¢111_'111,_11d_III I 0 "_l_tI_'11t_'lII,,,r_,I_I_i_¢1111_
I11_iI¢_I._1111¢'I_ iii ,i111o111.i11,,_II_l,e _'|1.'111k_,,d

S 111

I'hc _'_p1_,_._io1_111II1_' 11,,I_II¢ _,_tli1_II_'_Io11_,l_v olin, .,uld d,II_1II¢111,__'o11_._'1ll,d Io
¢lI_11'_i¢Ier,,I1111R,',lalld_11'_le_Ip1"11_1|IOlm,iI l'h_,.t,_,I111111'__iI'_'lh_'n_1,_,_¢111bIcd1111oh11¢,,
.I11_III,I11_111111_'_I111_111|It1pl_111¢'111_llO11_|_,pt'Itd_'111l"a,,|lhllt Io life oII|_11| tl_'_i_'e_I_,,_,
_'I_I_'d_ilh lhe _'ll.alm_,111t1111bcr_I_C¢iI'i_'d11tlhc WI|I'|: _I_I_'111e111,

A1w I_%1|H,.kI .S e_p1'_,,,1o11111.w,,Ip1_,_tr111.,I_l'R| I'|' ,,I,11_,111c111,|'11¢,I_._11"t,11oI_,,,111_'
! iou,__ h_tl_,o¢_er o11oiiI p111,

•.0 l _111d,_,

S,._A

bl |'h_' ea,_l_,,_!_,'_I_'Io do Ihl,, i_ _,1111loop,,

DII |,'OK I'FMI_IKAK_ I o I I'O ,t,4
I_1 |'ILK I'I:MI_IK'_RY ,I- I I'll ,I,,

• "IIl'Fl_q MA|' ARII$11 I.'_,I'AB_._OI,MAI ' ARR._$11 j,*_,

'f _Kl ITIoI SKIP(._I,
FNI),

II ¢o111d_lso he'do11_'_,'1111.__,illlll_'WRI I'F '_1a1_'111_'111

WRIII'(I_I MAI" ARII$I' I,*I.I',,IlI(2III,MAI' AIR:Ill I,*I,._KIP(II.
I'_IIIIMNIII,MAI AIII'..(I 2,*},I'AI_I._OI,MAI ' ARR_$11 2,*_,SKII_IL
I'l}l UMNI I I,MA I' AIR I St I ,12'l,l'All[._O'_,MAI' ARR2$I I ,.I.*},SKII}.I},
COl LIMN!I_,MAI' ARK 1$_2 1,*}.I'AIII'01,MAl' ARR2$I 2 I.*},SKII_I 1,

_.¢' I'IHIIMNII),IDAI',.IRII$i..I,*),I'AIII2OI,MAI' ARR2$12,,I.*I,SKIP(.II,

_,,. CI'IIIIMNIII,MAI'AI_IISI.II',,I'ABI_O),MAI'AKt2$1,1 I,*_I,SKII_I'I,

1980004512-306

_, - _ _._ _-_m__,

Apptnd_¢C C.3!

COLUMN(I).MAT AR R I $(3:2,'),TAB(2OI,MAT AR R2$(3:2,'),SKIP(I), :<
('OLUMN(I),MAT ARR I $(3:3.*).TAB(20).MAT ARR2$(3:3,*),

8.2B

_: I) b

2) a,c

,_ 3) d

4) c (paged files only)

5) a.e

6I noneofa-e;overridesthedefaultSKIP(I) .-

• 8.3A

a) INTS = (8.7,7); SCALS = (-I.225,4)

b) INTS = (0,I,I);SCALS = (7,2,0,0)

¢) INTS = (2,1,3):SCALS = (2,49,0,2,51)

8.3B

Change theREAD statement to:

READ(S) COLUMN(8),INTS,SKIP(I),COLUMN(8),SCALS;

8.4A i

All are legal' character subscripts. Only a, b, c, and e are legal vector subscripts;
the others have partition sizes not computable at compile time.

8.4B

', • _ The output will be similar to this:

_ , ¢ ABC ABCABC
_' 123AB BC456

1223ABC456 : ,,
ABCABC ABE i

8.4c
All the expremions listed are true. !

8.5.1A !

Only character atrlnlPmay be read using the READALLstatement, l

t -1 '
e

_r

o

1980004512-307

_r

('-32 Append;x C

_. 8.5.1B

All characterson the input file areretrievedby the READALLstatement, no matter
wh:: they are. Character strings to he input t,singthe RF _.Dstatement must b¢ sur- '_
rounded by single quotes, which are not placed into tile target variable.Further- ':
more. single quotes represent themselves in RFADALL input, while they must h_
represented b_ apairof quotes in successionin READ input.

8A

H REVEqSE:
M _Re.='.RAH; \
H OECLARE ARPAY (5,) CHARACTER(S I,

M CHAR_ARR]., CHAR ARR[;
H DECLARE X ZHTEGER;

• M REV:
M FUNCTZON(C) CHARACTER(S) ;
11 DECLARE C CHARACTER(_ l ;
H DECLARE CHARACTER(8)*
h CTEHP, CHAR_REV ; ,_
H OECLAR[ZHTEG[R,

M Z, L; _
E

n CHA__RIV,CTE,P• _;

M ZF CTEMP = ' * THEN
M RETL91N ' ' ;
[
H L : LEHGTHICTEMP);
M DO FOR I = I TO L;

E , -
M CHAR_REV : ¢TEMP ;
S Z LtI-E

M [NO ;
E

n RETURN CHAR.REV ;
M CLOSE REV;

M READI S_ [CHAR.ARRI l, | CHAR_ARRZ];
n O0 FOR X = I TO S;

j I H CHAR_ARRI • TRZM(CHAR ARRI 1;
S X: X:

• 4"

E . ,
H CHAR.ARR2 • TR|H(CHAR_ARR2 1;
$ X: X:

,_- h i,_lTE(6) ¢OLI'VIHISI, REVICHAR ARRI), COLUMNIISI, REVICHAII.ARR lb II

S X: X:

.# H [NO;
M CLOSE REVI[RS[;

t,
L_

1980004512-308

Apl_ndix C C.3.t

8B

M OECOOE NtqES:

n PAO_Jm:M DECLARE NMIES ARRAY(S0, E! CHARACTER(IS); _,
II DECLARE XNLZKE CHARACTER(80); _.
I1 DECLARE Z ZNTEGER;
I1 REPLACE NO OF H/J'IES BY *'SO";
[
I1 ZNLEN| : ' ' ;

I1 O0 FOR Z = I TO NO OF NMtE$;
H CALL GET NAME(Z) ;
E t *_
I1 ZF NAMES = 'S t THEN
S 1[,E:1

E t .
M k_ZTEi6) NANES II ' I| NAMES ;
S Z.l:][,_':

I1 ENO;

II GET_NAME:
!1 PROC[OU_E(N) ;

d H DECLARE ZNTEGERt
rl N_. K;
E
I1 ZF ZHL][NE : '' THEN

I1 CALL GET LZNE;
E
H K s _[NOEX(ZNLZNE* *,*);
H)IF K I O THEN
[

1t CALL FZRST_AH_)_LASTiZNLTNE. H);
fl ELSE
H DO;
[
I1 CALL FZRST_ANO_LAST(][NLZNE , N) ;
S I TO K*I

[* i
H ZNLXNE • TRZMIIZNLZNE);
S Ktl TO |

I1 ENO:
I1 FI[RST AHO_LAST:
11 PROCEDURE(C, H);
II DECLARE C CHARACTER(t),
I1 N ZNTEGER,
H Z ZHTEGER |
E

Is II _[• ZNOSXtC, ' ');

_ 'ad' _ $ u¢ ;
S N,l: I TO I-1

E * i
H NAMES • C ;
S H,:'x :[.1 TO II

/1 CLOSE FZRST AN0.I.AST |

H GET L][NI[:
II P_0C[DURE ;
E
/1 REAOALL(S) 1[HLZNE;

i [p t
_ /1 TNLI14E • TIIZHt|/1LZ/1E)| "

/1 CLOSE 6[T_L]rH! I• /1 ¢LOStSSv.m_i
i_ /1 CLOS[oicosl_.m_s;

> i

r#"i

j ,_ 2

i

A

5

1980004512-309

_("

M _uz_'i[rs TO EHGL ZSH :
H pRO_I#;'.;
M _3[CL kR[[NT[_.Z_ o

M H. H* T. U;

M D[_LAR[CNA_'ACT[_C _P_o
_1 LI[FT PART, RIGHT PERT;

PI _[CLA_[TtN$ AR_IVt ¢_ C_t,_ACY[Rt ;'_ _[NITZ&L_ 'TIN', '_t_TY' * 'TXlI_T_', *fORTY'. 'FZFIY' * '$I_¢TY ' °
1t ,S_'_NT_r*, '[XGHTT', 'N_,_[TI ')o

PZ OCCLA_[T_l[hI$ ACR_Cq) CN_,QACT_RI q) |_IT_&LI '|L[_'|N', 'TI_t'LV[_. '_ItlRT[E_', '_O_RT_[_' ° 'F|Ft[_N'

M o *[I¢'HT* ° *N|N[' I ;
W[AOI S I N:

I'1 ZF N x 0 IH[N
_1 CIO,

[
It LIFT P_RT • ° *;

[

ELS[
P_ DO;

rt H • L_IVLH, _00)_

M _F X • 0 TI*_N

[, ,

_1 LI[rT PARt • t._lTS II ' H_R_[O ';
$ H"

rl ELSE

t o

rl LIFT P_eT • ' ';

M XF U . 0 _N[H

$ I:

M I[LBZ
M 00;
N IF T • I TXl_l

[• *

M II_ZGHT_PAqT • TINS II '*' II UNZT$;
S T1 U:

R |LS| |f T • I TH_[H

Ill
H e|GNT PAIIT | Ti_rHS ;

5 I U:
I_ |LS[

• _ ij ,
& et i IZ_T_PAWT * UHITS l

. dr S i U:

M I [_0_
INO;

,

kl_ZTl[qi_) L|_iT P&IIT]| mZGHT PA_T;
rl i CLOSE|

1980004512-310

_" ,4pPcnd_C C-3.$

So, dora

(. _ STRUCTURE X:

2 cl w:CrOR.
t 2 DI MATRIX.
T I BI,

i 2 El VECTOR,
i 2 FI MATRIX; "_

STRUCTURE Y:
I A2 SCALAR,
I B2.

2 D2 ARRAY(5) VECTOR.
a 2 E2 ARRAY(51 VFC'TOR.

I C2 SCALAR;

a) TEST .DATA ._

L

, ,/_ ,/'_ :
, ,/\ ,,/\ /).,,/\' C C

' A' ,\ t_\
Vl V2 B Vl Vl V2 B VI

b) TFST DATA.L,M,A
TEST DATA,L,M,B.V I

TEST DATA.L,M,B,V2
J" _ TEST_ DATA,L,N,A.B
• • TEST _DATA.L,N,A,VI

TEST .DATA, L,N,C
" TEST DATA.IJ.A

TEST _DATA.I,J,B,VI
TEST_ DATA.I,J.B.V2

TEST DATA,I.K,A.B
', TEST .DATA.I,K,A,VI

._ TESTDATA I.K.C

r

............ _ ,-_--- --:..

T_

1980004512-:311

C.36 Appcnd_ C ._

c) STRUCTURE DATA:
I L.

2M, '"

3 A INTEGER,
- 3B,
,, 4 VI VECTOR,

4 V2 VECTOR, -[
2N.

3A,
4 B INTEGER.
4 VI VECTOR.

3 C SCALAR.
I I.

2J,
3 A INTEGER,
3B. •

4 VI VECTOR,
a 4 V2 VECTOR.

2K,
3A,

4 B INTEGER.
4 VI VECTOR,

3 C SCALAR;

d) All of the assignmentsshown are legal. .:

9.2C ':

STRUCTURE MINOR:

I V VECTOR.
I T SCALAR;

STRUCTURE MAJOR:
I XI MINOR-STRUCTURE,
I X2 MINOR-STRUCTURE, -
I X3 MINOR.STRUCtURE,
I X4 MINOR-STRUCTURE,

= .," t I X5 MINOR-STRUCTURE;DECLARE DATA MAJOR-STRUCTURE;
a¢

REAi_5) DATA;
CAt,L PROCESS(DATA);

• The procedurePROC !SS must be modified to accept a MAJOR-structureas input
insteadof the ARRAY(2) it originally took.

'¢

. i

?,

1980004512-312

APl_nd,,, C C-37

9.3A i

-_ STRUCTURE MINOR:
I V VECTOR.
I T SCALAR:

DECLAR_ DATA MINOR-STRUCTURE(5);

READ(5) DATA:
CALL PROCESS(DATA):

Now PROCESS must be changed to accept a 5-copy MINOR-structure as its argu-
ment. The data is .still read in the same order as before.

q.3B
II

a) A$(25;) or A$25 type: Am-STRUCTURE

b) A,B$(*:3) type: ARRAY(IOO) INTEGER

c) A.C$(IO TO 20;) type: ARRAY(II) SCAI_AR

d) A.D$(75 TO 85;) type: ARRAY(I I) VECTOR(6)

e) A.D$(I;I) type: SCALAR

9.3C

H IIEtNI

H imomMJ1!
15 S'rlKJCTXJIIIEPtllllON:
H I S$ INTEGER DOg_kE,
H I SAI.AS'¥ SCALMtt

H I JOe ¢001[INI'|BEll,
H I PNMI[CHJIJItCTglll($_') |
H OECLAIIE CCeWANY PEIHION-sTIKICTUNE(lOOli
E ¢,

• t n el,LOt S) (COMPANY) ;
a H NIIT|It) IUMIICflICPANT.IAULIT)) S leO|

, 4 R CkOSI I_ANi

9 _A

a) No: X.E.F hastheRIGID attribute',Y doesnot.

;_ b) Yea.

'" c)Yet.

d) Yet.

e) Yet,

" .lit*

e.

* i
L

]9800045]2-3]3

C-38 Apptnd_r C

9.4B

a) The 20th copy of A. type: A-STRUCTURE

b) The 10thand llthcopiesofA, type: A-STRUCTURE(2)

c) C from the first copy of A. type: INTEGER

d) D from the 4th-6th copies of A. type: ARRAY(3) VECTOR(6)

e) The 4th-6th components of D
from all copies of A. type: ARRAY(20) VECTOR(3)

9A

Structures allow the programmer to organize data o_' mixed types into one logical
unit that may be input, output, assigned, and passe,_ as a parameter. When a struc-
ture is passed as a parameter, overhead is saved, as all the components of the struc-

a ture became available to the called procedure or func!ion without being passed in-

dividually as separate parameters.

The use of structures also allows the transfer of an aggregate of assorted data in a
single FILE i/O statement. In !/O contexts, multiple-copy structures are particularly
convenient for reading or writing large blocks for the sake of efficiency.

,q

¢

1980004512-314

.4ppenda_ C C-.;_

_B

n] S[ST.CtR:

N J P_._JAM;M STRUC TUII[|TEN OATA:

rl [1 _[c V[CTC_,

M J I V!M|TAG SC&LAR;

M _ STgUT.TL_ I.,_|T .DATA;
I'1 |] ACC_.L |TIM OATA-STf_JCT6q_I[.

M I V[I. ZTEM_OATA-STIIUCTutr,

fl I PXTCH ZT|M_OATA*$TR'JCTLq_[;
M 5TRUCTt, SE 9[ST:

M I I_|ST_ACCI[t. ZT[M O&TA*STRL_T_I[,
M I iREST_VEL ZTEM_OATA*_TR_TU_[*

11 | B[ST.PZTCH ZTEM.DATA-STR6_Tt_gE;

N O[CL*AP| 8[ST_OAT& BEST-STRL_Tk_[;

N DECLARE STS;|M.O&TA _IT_DI1A-_TIIU_T_|(3);
M MXOO_A[:

M FUNCT X_(DFU) ZT | FI O AT J - 5 TlWl.tt*TtJR[;

M D[CLAP[DFU ZTEM OATA*STIIL'¢Tk_Xt]l ; /*I DATA FIl¢_q t_|T e/
M |F DFU.T|HETAG • MZOVAL(OFU.T|METAG , OFtI,T|METAG , 0FU.'w|MIETA,i I THEN

S I; 1; Z'- 3;

_1 (*

M Ill[TUrN DFU ;

S 1:

Pl ZF OFU.TTMI[TAG • MZDVAI, IDFU.TZMETA& , DFU.TZMETAO , 0FU.T|METAG) THEN

[

M IIETUgN OFU ;

S Z;

! *

11 rETCH 9FU ;

n CLOSt nXOO_E;

I[

n miAO_ S I (STSTIM.OATA) ;

I[• * *

M lEST OATA._EST.ACCEL • MIODLE! {S15T|M.OATA,ACCEL));
S *;

n |[ST OA,TA,S|ST_V|L , M|ODL|C |qIST|M _AT&.t[LI);
S **

fl IlfST OAT&.II|ST PZTC_ • M|DgLE¢ |SYSTEM _AT&.r|YcH) |;

$ e;

,_ t n CLOS_ IIEliT L"_[;

• r #. "_

1980004512-315

/

C.40 Apl_nd_r C

SohJ_ns

lO,IA

Control falls throu|h to the statement following Ihe ON F.RROR statement, unless
the ON ERROR statement has:

I) caused a GO TO or RETURN statement to be executed, or

2) specified SYSTEM or IGNORE, in which case either control returns to the pea-
gram at the point where execution was interrupted, or the prolKam terminates,
dependin| on the particular error.

IO.IB

if the error should occur after control has left the loop, an unexpected transfer of
control into the loop will occur, potentially causin/disastrous results since loop vari-
ables may have unusaal values, and TEMPORARY vahahles may even have been re-
defined since leavin| the loop.

a The compiler normally enforces a ban on branchinB into DO... END |roups. In this
case where the compiler is unable to do so, the prolrammer should follow the same
COUla_.

IO. IC

I) SYSTEM: If no ON ERROR statement is active for the cuncnt error, or jf the
active one is ON ERROR SYSTEM, the standard action, if any, is taken lad an .
error messale is sent.

J

2) IGNORE: If an ON ERROR IGNORE statement is in effect for the error in
question, the standard fix-up is taken and no em_ mesmee is sent.

:3) If an ON ERROR statement deflninll am, cr action is in effect for the specil_g'd
error, then the user code receives conrail without pmsibtlity of returni_ to the
point where the ¢ffor occun_d. No error rnesaslR is sent.

iO.ID

SC_m_do, Pamaka_
• p

a

• # , ERROR_m:n) I fu_l

ERROR$4m:)or _ !

ERROR_m) 2

ERROR .1 1 I

1980004512-316

Apprnd_ C C-4/

I0,2A

An error handier may be deactivated:

!) when flow oi"control leavesthe-bt,, \ _-..._.[z the handler,
z

."l _ h.-r, it is supersedr,t b_ ano'_, __..... . • ,,,ter.and

3_ v,hcp a_zOFF _,RROR =tate_.. -: ,_Lre _me form is executed.

IO.2B

a) All thrg,e error handlers a_." ,;_'_iactive: both OFF ERROR statement_ were i|-
noted.

b) ON ERROR5(I.I) IGNORE. and ON ERRORS(2:) IGNORE; are still active.
The first OFF crr.r statement cancelled the first ON ERROR statement, and the
second had no effect.

|

10.3A

The SEND ERROR statement is used:

I) to simulate the occurrence of system-defined errmz for tcstin|, and

2) to allow the user 1odefine errors and wine error handlers for them.

10.3B

When an appi_able error handler is found in the local block, hillher level blocks
not be searched, as handlers in the ¢allin| blocks zre o_emddcn by the local handler.

IOA

a) No meual_

h) Mcssal_

c) No m¢_

dl No mes_ll_
J

f) No mcml_

I0 No melville

i h) Me_q_

i) No meuql¢

• k) M_LqW

I) No

• dr_ _-

$, ,, r

1980004512-317

C.42 Apprnd_r C

Sob_m

_ I I.IA

I. If several prugrammen are workin| on a _nl_e large pro)cot, it will probablybe
convenient to _mllfl them _el_retely-_umpilable _cttom of Ihe prolKamcom-
plex.

2. In a mLJltiprol_mminlenvironmentwhereseveralPROGRAMsare to runcon-
¢ummUy.thereis no way to compilethemall in a_nlle compilationstep.soa
prolP_mcoinpiexmusthecreated,

J. If the overallstructureof a _rol_amis fixed,but smallsectionsareunder-lJoing
revision,Nparatinl those_tions out asCOMSUBsmayallow:hosepartsto he
revisedandrecompiledwithout requitingrecompilatF_nof theentire protP'ah.

• II.,B

Just as if the COMSUBwere an internalprocedure,the error en_ircmmentof the
calleris searchedfor anappUcabieenor handler,thentheenv_ronmefltof thecaller's
ca/ier, and so on.

I1.1¢

a) Compilinga COMPOOLre_lv_ spacefor the va'iablcsdeclaredtherein.Also.
in mostimpiementatJont_templateis producedwhentheCOMI:(X)L is com-
piled.

b) The COMFOOLtemplate,w[mnImrludedh'_the compilatkmof lnother ccmp_
tion umt, m_n the _m_abtesdedamJin the ('OMPOOL knownto the*.compila-
tion unit.without caus| any_xN:eto he re_e_edfor thlMevl_3bJ_s.

I 1.2A

The _ALAItJ A and Bcanonlyhe refemm.-edtnskk the_olpm P butout_idethe
FU,'KI'ION bl_'k F. Insideof F, lCopinl ruleswill csux A and B to refer to the
Io_JlINTEGER vmmbl_• it

• • ' I 1.2B

FILTER doesnot requireany of the datainGNC_I'OOL0m themeisno needto Jn-
clmlethe templlle for GNC__OOLin the ¢ompilatkmof FILTER.

II._C

If _ _ tompt_lesare_ M a _ ¢oml_',t ".n,_ of varlald_
mutt be tm_t_, _ them is only ones_'ef/_llm_l outlide lh_au_nMm'k of a
companion. It,.ce.. is in _ _ m live compoui vlmhi_ unlq_r

. names,m _hat it i_ pom_ m mfm to any ¢omsx_ him any o4hmr_xe_ttoo
un_ if m_u_ry.

" i

' iq

r_

1980004512-318

Appendax C C-43

II 2D

a) A template for FILTER is needed in order to compile NAVIGATION, and with

this order of compilation, it would need to be hand coded.

b) In tiffs case, CQNTROL needs the lemplate f,)r FILTER.

c) No template need be hand coded, as all will be available when they are needed.

d) This order of compilation is particularly inconvenient; all templates will need to
be hand coded.

I 1.3 s.

a) It Is possible that the savings account for one ID might be updated, then the pro-
cedure interrupt and another account updated. When control returned to the
first task, the updating of the checking accoant would then be done incorrectly,

a transferring funds from one customer to another.

b) If SAVINGS and CHECKING are declared with the LOCK attxibute, and the

transfer is enclosed in an UPDATE olock, there is no possibility of an incorrect
transfer of funds as described above.

I 1.3B

a) In this case, any interrupt/on of an execution of AWARD INTEREST by an-
other process that calls AWARD _INTEREST may cause either an error in up-
dating the account, or in logging the interest.

b) Make the procedure AWARD_.INTEREST EXCLUSIVE. Then there is no possi-
bility that two processes will attempt to run AWARD_INTEREST concurrently.

(

.;)
¢

%
G_

,I

1980004512-319

(;44 Apl_ndvt C

Solutions

12.iA :

,, r-q F-l. rq !--1 r-! F
4 0 S0 200 280 400 480 b00 fiS0 800 8S0 1000msec.

,, . r-] I---! OF
80 160 480 560 740 880

,.0 0 F]
0 160 320 ¢,tlO "

12.1B

, , [-q F-] Fq F-1
0 80 280 360 560 fi40 840 920

. r-q r] i-1 r
80 160 4t)3 653 98fi

F-1 F-1
160 240 740 820

12.1C

SCHEDULE X PRIORITY(I), REPF:ATUNTIL 3.5;
SCHEDULE Y IN 2.5 PRIORITY(2). REPEAT EVERY I UNTIL 6;

12.2A

The AT clause allows a process to be scheduled at a definite, predetermined time.
The ON clause, on the other hand, allows a proce_ to be Icheduled depending on

t occurrences of an unpredictable nature. Either one can be appropriate, depending

,_¢r on the desiredeffect.

12.2B

Q it active only at B.

12.2C

SIGNAL X',will cause X to become TRUE just long enoulh for all active event ex-
prettiont referencing X to be evaluated. In particular, no code tatting X a, a
BOOLEANvariablewill ever find it TRUE -, • remit of SIGNAL X;. The sequence
SET X; RESET X;will ahtoe•use g to become TRUE, thenreturnto FALSE, but if
in the meantime the pmcea executing the SET and RESETatetementz relinq_
control, X will remain SET during execution of tome HAL/S code, and may be

.dr" found to be TRUE if tatted.

r

t

1980004512-320

", AopcndlxC C-4,S

12._D

SCHEDULE X PRIORITY(I), REPEAT UNTIL TRAN2; :.
_" SCllFDULE Y ON TRANI PRIORITY(2), REPEAT EIIERY I UNTIL 6;

_'t 'I...E

a) Unlatched; there is no need to specify LATCHED, so take the default, ._

b) Latched; it is not possible to signal several events simultaneously.

c) latched; an unlatched event will always test FALSE. /

d) Latched; RESET is illegal for an unlatched event, \

e) Unlatched: presumably the loop is to execute once for each event iransition, .-
which would probably not happen if the event were SET and remained on.

l

12,2F *"
,+

SCIIEDULE T ON MASTER PRIO(999l REPEAT:

T: 1"ASK; :.
RESET COMPL;
WAIT FOR "IMASTER'. '_

1
SET COMPL; +
WAIF FOR MASTER;

CLOSE T;

12,3A .
H p1

11 PlIO_tIH; :,
I1 OltCLAIII[O|NI_I THTIGIrll INITIAL¢|O)|
II SCHI[OULE T PIIZOItITYIOgS), Ill[fiAT UNTIl. _L;
H T:
H TASKi
II MAZT UNTIL 11 / 0[ICI11

? a" II H I_ZTI[(a) I_,q4T]MI_ |

++ d/ • N Oll',_"l • o[IqOl+ - _1 _ '+. H iF 0|N_4 ¢ | THEN

N OEIqCN • 11

n clog! 1; _ ",

H ¢L0$| PI

12,3B

1 'Unless somethiug causes P to exit from the DO WHILE TRUE i_p, CANCEL P will x
,_, have no effect,

++'+. If X is necessary to keep P as it is, it can be stopped with:

_ TERMINATE P; :_-

However, it is safer simply to remove the DO WHILE TRUE; and END; statements
' _" from P, and derive the same effect from writing:.+

Y' SCHEDULE P PRIORITY (I00), REPEAT;

i +p#, . P

t -+'e

, +
[':

+ I i|:

i '
"x ;

1980004512-321

C-46 AppendlxC

12A

11 FSkl:
M PROGEAH;
M 0ECLAR[VI[C1Qt.
It PQSZTZON,ATT][11JOE,VELOC'_TY;
N OECLAPESCALAR,
rt P|TCH C_ll_t_, ROLt_.C0h*IAHO;
M DECLAREOESTZflATZONVI[CTOR;
H 0ECt_E ARRAY(4I,
K SEt_JEO_ATTITUOEVECTGS*
fl SEHS(O_VELOCETYVECTOR'*
11 _N_JT.IqOC:
II PROCEOLSE: /*l SCALE A_O FOM_ATRATA FIIQfl SCN_IICItSm
H CLOSE IHP',JT..IqO¢;
M EL[YO_..Ct_IOS:
fl PROCEDURE; /e _ AEROSUOFACESe/
H CLOSE ELE_H.ClI0S;
II TELEMETRY_
11 PI_OCEOURE; /_' 00NNLZNK STATUSVARZ_U_LCS•
11 CLOSE TELEt_TRY;
I1 I_IOOERCI"QS:

JI N PROCEDURE; /e COHTROLTAN AXZ$ */
It CLOSE I_UOOERC_DS;
Iq SUIOANCL:
Iq PROCEDURE; /e COIlPUTERESEREOFLZGHT pATH
H CLOSEaUZOANCE;
11 FC_IIAXNS:
11 PROCEDURE; /u COMPUTECOHTROLLAI4 GAENS*
II CLOSE F¢ G&ENS.*
11 NAV1[GATX(_I:
11 PR0CEOb, /a COMI11JTREAL POSITEOHAHO VI[LQCETY•
FI CLOSENA_,.GAT|QH;
Iq OZSPLAYUPOT:
H I_OCEOUllE; /e REFRESH¢RT m/
H CLO_ OZSPLAyIDOT;
11 _EOULE TL IqtZOWZTY(4), REPEATEYERY ,L;
11 _EOULE TE PRTOllETy(]), REPEAT EVERY .E;
11 SCHEDULET3 I_ZOR][TTiE)* REPEATEVERY .4;
11 SCHEOULET4 pRTORETY(L)s REPEATEVERY o6;
11 TI:
11 TASK;
H CALL Z_qJT I_0¢;
H CALL ELE_I CIIOS;
II CALL TELErRTHY;
fl CLOSET|!
It T|:
11 TASK;
H CALL RUOOER_Cfl0S;
H ' CALL CU|OKE;

11 T]_
TASK;
Iq CALL PC._|HS;

,_ II n CLOSET3;

i ¢ _ TAS_;n CALLNAVX_YZON;
fl I CALL OISPLAT.U_OTI
11 CLOSETA;
fl CLOS**FSN;

r

t

1980004512-322

Appendax C ('.47

12B

h Pg_AH;
It O[CLAJtI[VICTOR,
M POSITION. ATTII"UDE. VI[LOCITTI
II O[CLAIB! SCALAII_
m PZTCH_COI_AHO,IIOLL.C_;

_ n O[CLA_[DI[STI_TI(X; VICTOA;
It D[CLIUI[AIIRAYI_,|,
It SEHSTO_Jl_l_J_l VICT_*
M Slt_[0 V|LOCZTT **_CTI_

OELL,U_l[Tlga_ I[VltATl

P$OCIf_._I; /m SCALE Ate F_IIAT *,S
nAsA SKNS_S

i It CLOS[D_*UTJqlQ¢;
n [L[_"_Cr:2$:
H PI_OCIDU_I| /ll _ A(IIIOSUNFACI$II/
It j CLOSE[LlVC/4 Cit0sl
It TILI[rt_TWY:
It PIIOC|_,S[I ,'u iICI_LINK STA_/I VAIII&IILtS a/
It i CLOS! T[L[I_[TRy;
I1 _Olllr C,'_OS:

PI_CCIG(_I: /* CCflTIQL YAM A_IS */
CLOSE IqUOSllllCit0S I
GUIDAKCl:

It , PIOC|_JIII; /*1 _T! 01[SIIII1,0 FLgGHTpATH t_,
It CLOSI GUIOK! ;
It i FC.IAI_:
It PIIOCIII1U_ll /_ COM_)T[COt_TROLLAMGAIH$

• n ! CLOS(FC.GAIHS:
It NAVI_kTZ0?4:
It i HOCI0UPl; /*_ CO_ii_T! IIIAL POSITICH _ VILQC|TT g_*
It CLOSl NAVIGATZ_|
II 01SPLAY UPOT:

It CLl_Sl DI$PLAY_UPOT;
It $CflI_UL[TI 4_I0k_ITY(L)_ III[PIATI
It SCHIDULI T_ _I_ITTICI, HI_'IATI
I! ICHIOUL! Tl P_II_ITY|II* ItlPIAT_
II SCHIOUL! T_ P_I0_ITY(A), HIPIAT_
fl T|:
II TASKl
ff CALL |NPUT.iSI_C;
II CALL IL|V_t CHIll _
It CALL TILI_TI)T I

,, It SIGNAL T|.OCHAI;
It CLOSl TII
It TI:
It TASKl
fl MAlT FOIt TI.O_I,I_:

MAlT FOR TI 04_:
fl CALL IIUOOI_ICMOS;
It CALL8U|IIKI |
II ClOll TI;
N TI:
II TAlK I
II I)0 FORTIItP0_AHY 11• I TO 41
fl MAIT FORT|.O0_[_
N IN01
I1 CALL _¢.IAINS 1

• H CLOll T$1

ff TAI_;
/' • ' It O0 FOR TI_011AIIy I • I TO 81

N HA]IT I_ORTI.OClNII
N IN01

_ CALLII_VI_TI_;CALL 01$PLAY.U_0T;
I_ ¢LOS_ 'r_; i
N CLOH FSN_ ._

• This solution guarantees that the various tasks will never be execut/ng any of their !
procedures simultaneously, thus avoiding the need for UPDATE block protection of i

!. anysharedvartab!e,providingthatnoneof theblockswill_'ontainWAITstatements.

_q

1980004512-323

C-48 Appendix C

, Soludons

13.1A

A) IF FLAGS AND BIN'I lO0000000_' = BIN'1100000000_'.

B) IF FLAGS AND BIN'010IOIOIOIOI' = BIN'OO0000000000'.

C) IF (FLAGS AND BIN'! l llll000000' = BIN'000000000000') OR
(FLAGS AND BIN'000000111111' = BIN'O000OOl l ! I I l ')

D) IF FLAGS = BIN*101010000010'.

E) IF FLAGS AND BIN'i 11010000011' = BIN*I010IO000010'.

13.1B

H FL][P:

j H FUNCTZON(B) BZT(1_);
H OI[CL&RE 6 BZT(IZ);
/1 DECL_E FLZPPFO BIT(|Z);
II DO FOR "[/1PORARY X z I TO 12;
E
I1 FLZPPI[D : B ;
S X 13-X

H [FO;
[
II II ETUIIH FL1rPPE0;
I1 CLOSE FL|P;

13.1C

I1 EXI[ffCZSE.C:
/1'1 PllOGIIA/1;
II OI[CLAIIE TABLE ARffAY(SO) 8ZT(14);

14 SET 8|TS:
/t FSOCEgUg[(ENTITY, VALUE);
/1 DECLARI[ZHTI[G[R,
I1 I[NTRY, VALUI[;
I[

• /1 TABLE • OZT (VALUE);
,_ S 01_V(ENTRY,4):6 AT (6 flOOII[HTIIY,4)*I) A AT II-S

14
II CLOSE SET.BI[TS;
I'1 GET 6TTS:
H FUHCTIC_I(I[HTRY) INTEGEIII;
fl UI[CLARI[EHTRY ZHTI[GER;
I[

. H RETURN ZH_*EOI[R(TABLE ,;
S O][U(l[ltTl_Y,4)|6 AT 6 HOO(LrNTllY,4)tl

-" n :LOU O|T.SZTS)
It CLOSEEXI[IRZSf_.C;

°

j

-&,

r_

1980004512-324

L

Appendix C C-49

13.1D
J5 NCm_L t __
H FUNCT|0N(UNHQmt) liT(]all
ii D[CLAR[_ 8ZY4$t);

,_ II DECLAII[BBIT(32) ;
n O|CLAItECOUNTI'HT|IIER;
[
I1 IF UNNONH • MEX'00000O'THEN
S 910 32 **

!I mETtJ_HL_X*0000000O' ;[
. i • Ut4_M;
[
II DO F0N COUNT • I TO 6 NHIL Ir B • HEX*I)*;

: q 4AT 9

[
M i • BITISHLI]_TEGEI_I8)p 61)1
S Z4 AT q Z4 AT 9

[
tt It • sIT tzm[szlas) - 1);

• S 7 AT P 7 AT O-t 7 AT t

rt LrHD;

m RI[TUaNB;
I1 CLOSEmL;

13.1E

OUTPUT = |E5 INTEGER(INPUTS(4 AT |)) + IE4 INTEGER(INPUTS
(4 AT 5)) +

IE3 INTEGER¢' UT$(4 AT 9)) + I E2 INTEGER(INPUTS
(4 AT 13.

IEI INTEGER(INPUTS(4 AT 17)) + INTEGER(INPUTS
(4 AT 21));

13.IF

_" _ OUTPUT - INTEGER(BITS(@HEX) (CHARACTERS((_HEX) (INPUT))):
,4

13.2A : .

1' I) Partitions of bit strinp,

2) Coktmns of a matrix,

3) A structure node with copineu. ._

o#, i

J|

g,.
%

1980004512-325

('-50AppendixC

13.2B
i,

', a) Yes, if a name variable points to some variable in an outer code block and a vari-
able is declared in an inner code block with the same identifier as that name
variable points to, the outer variable can still be referenced.

b) No, need more information than the addrex_ which is all the name variable
allows.

c) Yes, name variables allow sharing. Several name variables can point to the same
data item.

d) No, it is possible to go up and down name pointers but not reference an ab_lute
address.

e) No. name variables can only point to data of the same type they were declared

13.3A

s STRUCTURF LOOP:

I VALUE INTEGER.
I NEXT NAME LOOP-STRUCTURE:

DECLARE CIRCLE LOOP-STRUCI'URE:

NAME(CIRCLE.NEXT) = NAME (CIRCLE):

13.3B

STRUCTURE TQE:
I TIME SCALAR.
I ACTION NAME ACTIONS-STRU(TURE,

I NEXT NAME TQE-STRUCTURE;
STRUCTURE ACTIONS:

I ACTION INTEGER.
I AFFECTED-PROCESS NAME PROCESS CONTROL-STRUCFURE.
I NEXT NAME ACI'ION-,_TI'RUCTURE;

line 28

, j" _ DECLARE NAME TQE-STRUCTURE. NEWTQE, ENT;
DECLARE NAME ACTIONS-STRUCTURE, NEWACI', ENTACT.• I

NEWTQE.TIME = WHEN;
NEWACT.ACTION = WHAT;

, NAME(NEWACT.AFFECTED PROCESS) = NAME(PROCNAME);

-_ after

, line 37

_ NAME(ACTV_Q.ACTION) = NAME(NEWACT);

t

1980004512-326

,t

AppendixC C.5!

afler

line 40

IF ENT.NEXT.TIME = NEWTQE.TIME THEN DO;

IF NAME(ENT.ACTION) _ NAME(NULL) THEN DO;
NAME(ENT.ACTION) = NAME(NEWACT);

r_ RETURN;
'_ DO UNTIL NAME(ENTACT.NEXT) ==NAME(NULL)

NAME(ENTACT) = NAME(ENTACT.NEXT);

END;
NAME(ENTACT.NEXT) = NAME(NEWACT);

, RETURN;

after 44

NAME(EN3".ACTION) = NAME(NEWACT);

after 50

NAME(NEWTQE.ACTION) ==NAME(NEWACT);

J 13.3C

if PCB is fast or last in the ready queue, the code to remove PCB from the ready
queue will not work. To avoid the difficulty, rewrite STALL as follows:

STALL: PROCEDURE ASSIGN(PCB);
DECLARE PCB PROCESS CONTROL-STRUCTURE;

C

C Remove from ready qlleue
C

IF NAME(PCB.LAST)=NULL THEN NAME(PCREADY)=NAME(PCB.NEXT);
ELSE NAME(PCB.LAST.NEXT)=NAME(PCB.NEXT);
IF NAME(I_.B.NEXT)-I=NULL THEN NAME(I_B.NEXT.LAST_NAME
(P('B.LAST):

C

C Add to stalled queue: same as in the text
C

NAME(PCB.NEXT) = NAME(STALLED);
NAME(STALLED) s NAME(PCB),

CLOSE STALL;t

_dr

. J

it

L

1980004512-327

C.52 Appendu¢ C

13A PC_ENQUEUE: PROCEDURE ASS|GN(PCB):
DECLARE PCB PROCESS_CONTROL-STRUCTURE;

DECLARE PCPTR NAME PROCESS_.CONTROL-STRUCTURE;

IF NAME(READYPC) = NULL THEN DO; /*empty queue*/
NAME(READYPC) = NAME(PCB);
NAME(PCB.LAST), NAME(PCB.NEXT) = NULL;

RETURN;

END;

NAME(FCFTR) = NAME(READYPC);
DO WHILE NAME(PCPTR.NEXT) 7= NULL;

IF PCFTR.PRIORITIE<PCB.PKIORITIE THEN DO;
NAME(PCB.LAST) = NAME(IK'PTR.LAST);

• NAME(PCB.NEXT} = NAME(PCFTR);
IF NAME(I_B.LAST) 7 _ NULL THEN

NAME(PCB.LAST.NEXT) = NAME(PCB);
RETURN;

END;
NAME(IKI_R) = NAME(PCPTR.NEXT);

END;
C
C PCB iS LOWEST PRIORITY: TAG ON END OF LIST
C

NAME(PCFFR.NEXT) = NAME(PCB);
NAME(PCB.NEXT) = NULL;
NAME(PCB.LAST) = NAME(PL-'Fi'R);

CLOSE PC ENQUEUE;

• 4

r #, ".

¢

i

1980004512-328

J

!

APl_r_l_xC C.J3 i

13B !

II IIIUCCALCI
It INIOwIAn! ,_
R OECLMItZlNT|RIIOelUBLko iIq ZNT|, [NTZi
H Ol[Ct.Nl|_lt.]_q_CKJIACTENIO0)i '_
H 0[¢LAIIi[PLUSliO0LI,44;

t *
H BIrAOALLili) ZNUM;
| * P
el ZNLINt• _IIINX14LDiE)_
| *
H K • |NOEXIXNL11_*'eo)|
H |F K) 0 TH|H
8

H EUI|
fl O01
II
H Pi.U6 • FALSE|
|
N K • XHDIIXtD41.1_HID'")i
tN0!
I --
H INTI m XNTI[OIEll I ILTT I |HILXNt)) ;
s O00UIL| Ioqx I TOK*I

8
H INTt • lINTllett ililT IgaLIM • |)l
S IO0UiJL8 ONSX It*l TOO

I
M Sy _ XUlU
H lll_rl w INTI * INTti
et IL_
n IN,r1• Z_l * I_fY|!
II liZ._IG) _4T_, ICNJklIBL"NNIll|'lrllMT$lli

IS ¢L008llEN_LC8

1980004512-329

C-J4 Appendix C

i

14A A • lIB C)_i__! + D)@3 ; t!

14B If the absolute value of the fraction in C is_ 0.$, then the exp_nton: i

B - (2 C') I
will came overflow; where,,,,

B" 2 C@_l ;

¢l_rlnevtr ¢lulc anover_ow.

t

.a" ,i

. _i! j

1980004512-330

I ABS DOUBLE NAME SINGLE |
ABVAL NEXTD4E SIZE .
ACCESS ELSE NONHAL SlfiP !
AI_I'ER END NOT SQRT
ALIGNED EQUATE NULL STArk"
AND ERRGRP STRUCTURE
ARCCOS ERRNUM OCT SUBIIIT
ARCCOSH ERROR ODD SUM
ARCSIN. EVENT OFF SYSTEM
ARCSINH EVERY ON
ARCTAN EXCLUSIVE OR TAB

• ARCTANH EXIT TAN
ARCTAN2 EXP PAGE TANIt
ARRAY EXTERNAL PRIO TASK
ASSIGN PRIORITY TEMPORARY
AT FALSE PROCEDURE TERMINATE
AUTOMATK' FILE PROD THEN

FLOOR PROGRAM TO
RIN FOR TRACE .
BIT F,NCTION RANDOM TRANUOSE
BOOLEAN RANDOMG TRB4

READ TRUE
IIY GO READ,ALL TRUNCATE

CALL HEX REENTRANT
CANCEL REMAINDER UNIT

REFE,AT UNTIL
CASE IF REPLACE UPDATE
CAT IGNORE RESET
CEILING IN RETURN VFCTOR
CHAR INDEX

• " _ CHARAC_R REMOTE
CLOCKTIME INITIAL RIGID WAIT

, • , CLOSE IWrEGER RJIJST WHILE
COLUMN INVERSE ROUND WRITE

; _L RUNriNE
I COI¢IT_I_T LATCHED XOR

COS LENGTH SC,ALAR
COIl UNE SCHEDULE

LIUIT SEND
DATE L(X_ SET
DEC LOG Sill.
DIFL'LARE SHR
DENSE MATRIX
DEFENDEI_ MAX SIGNAL
DIET MIDVAL WIGNL,_

r ply MIN
DO MOO

i I/0 _ fennaU

The ubil.tytOdo FOKMATstyleIIO lm beenimplen_ed in IIImmllHAL/S c_mM.
TI_ b an eXlmlmee_ f_tun olrtlw huquqp, it will anty be adoptedtnlo lllwslllmdm_
ItAL/S bnl.qle alterm exlmlem wi_ Ju_.

This Appmdix dma_s FOIUdAT I/O amit b cus_.ntly tm_tml. The ruder
shouldkeepin mt_l tlwt FORMAT I/(3 constructsa_esuL_ctto champ.

E,I YH[FORMOF READ AND WRITE STATEM_TS

Tlw me o(FORMATstn READ andWRITE mtemenU _lmv foemo_ flextbk inputl
Oulpl;4 operuliomLFORMATs. h_v_. my not be uw4 wllh READALL m FILE

• uM_.jamls.

Slandml I/O _ dimJmd in Cluqq_r8. With FORMAT IIO. a dU,_l_ exWeuion
follow_ lhe _ IN commb lhaI'onmt o¢d_u:

WRITE(IS) ELTNO IN '14'. VALUE IN 'FII.2';

The ¢lm_-m _pmmlo_ ha, no _:tal ne_r_iom; it canbecomputeda! nmtlme:

DIk'i, AIUE FIELD.LENCq'H !N'rI_FJI[;

WRITE(6) (VARI.VAR2) IN 'l' li CHARACTENFIELD.UENGTH);

E.2 UITII oir DATA ELIMINTb

fm m elm_nt,. TI_ 1_1of _rm_mll b nm_ly endomdb_penmtlm_. ,,

IX$) (VI.VI.CHI) IN *FI.2.FIO.llA6";

_" 0 beq_l Io:

REAJIXS)Vl IN 'lql.2'.V2 IN 'IlI'I0.Y. IIIrJH!). COLUMN(I).CHI IN 'A6';

A FOblAT cklmlw _lmmlm Is _ li_ o_ FOR]I_T |tin m_d by cmmmt o_
dMim(_ A dmltb mlubmll_ Io _SltJ_iI). COLUI4N(I).

Tlkm _m t_m tylm M' Irom_l ltm_ IJO e_l_l llmm m I_ slamla_ fillIP, LINE. I
PAGL COLUMN.4ND 1ML TkW mW _p_ wi_k_ FOILM4Tdm_'m eqmmlom _

/

]9800045]2-:332

f

I_'.Z .4r, pendlx E .,

Other format stemsare summarized in the following table. More detail will follow.
3.

Sample Sample Interpreted
Item Use Example Output Input As

I format TEGER 15 _1;97 _42 42

F format $ ALAR F6.2 M98.67 98.672 98.672
_¢867 98,67 :"

E format S ALAR with E9.1 I_- t.I E-02 _1_246E+14 24.6E+14 .:"
exponents ,:

U format TEfiER.SCALAR US _1697 _IS_$42 42

or CtIARACTER ._,
A fomlat IARACTER A4 _ABC I_ABC I_ABC

X format b bnkson output, X2 _[6 9Z skipped
= pson input

P format TEGER and PANS '= ANS- -4.2E-3 !--4.2E--8 -4.2E --8
ALAR $$.$*$$

Quote string IARACTER on "ANS'q" ANS=d ABCDE skipped
output, skips on

put

When a t]ata item is processed, the format character expression is scanned from left to *__

right until at, I, F, E, U, A, or P item is found. Slashes, I/O control, X items, and quote ,:"
airiness are processed as they occur. The next data item is proce_ed similarly, except the ;_
scanning of the format character expression resumes where it last stopped. Arrayed data :_
items are treated element by element.

There are several features which make writing format character expressions easier• A
number may precede a format item to indicate repetitions: *

'5F8.2' IS TIlE SAME AS ' _ " _ _ _ _'F8..,I'8..,FS,.,F8,..F8..

Parenthesis may be placed around several format items and a repetition given for the entire

," f expression: ._
,¢

'2(E16.7/)'IS TIlE SAME AS 'EI6.7/EI¢_.7/'

If the end of a format character expression is reached and more data items remain, there
are two possibilities.

I. If the fomtat character expression _.ontalns no parentheses, s_anning resumes from ,;
: the beliinning.

2. Otherwise, scanning resumes from the open parentht_is correspondin8 to the last
closed parenthesis. A repetition is taken Into account If present,

• For example:

WRITE(6) ARRAY-X IN '10F8.2/';

.¢- $(I TO I00) :.

produces I0 rows of IO flllures each.

r

1980004512-333

i

E,3 I FORMAT ITI'MS

I l'ornlat itelSlSitrc u,_M for INTFG|:R I,'0 They htlv¢ the t'ornl'

In

whe_ IIi,i',Ill01'ts_ncdposilitcill_¢gcrglvlilgtheflchlh'ntllh,hlqqi¢itINI'FIiFR;S('AIFR

collvcrslon Is allowcd, Vmrmblcsor ¢Mwc_ions whwh ar_"of type ('IIARACI'I:R or BI l"may
m)l b¢ Ilandlcd with I FORMAT.

For WRI I'F sldl_'ill¢llls, a ._i_n is Priltlrd only it' tile number is II_ll_tlivv. l'h¢ number Is
rtght-jti._,lil'icd Ill the.' OUIl'qll flChi. If Ih¢ ollll'ql[I'i_ld i_ too slllal], llstclinks _rc Printed _uld:In
error is sent. For ¢xampk',

DI:('I.ARI" A INTFtiI'R INITIAI(3),

' it WRl'l'l'(O} (A,A+S,A 4,A+ _)o) IN ' '"

i_ruduct_x_3] I I *e with ,In overllow emir.

1'.,4 F AND F I-'ORMAT ITEMS

F FORMAT items -,Ix' used for d¢chllitl qtt_ltllllies, r I'ORMAT items arc used for dc¢i-
Illal qtlitntilit's wlitl¢lt Ill scicntil'ic nolitliOllS [i t',, wIIh t"_l_M|t*lllS),

111¢ l'O|]OWilllll_Oll(forlll_itff'aIlowe_l',

Fn l'n.d

l:n Fn.d

n isan unsignedl_siliwinteilrrlllvini,'lltel'icld|cnglh.d istinunsi_l_'dl_sltiv¢inlel,'cr
" ilivintt lilt' Illllllber of d¢culltll plitc_,,, OIHY INTFtiI'R or SCALAR v_riithlcs or e,q_r¢,_sious

can be rritd or w|'ittell with F _nd E FORMATs.

For RI'AD slal¢lllenls, Ih¢_ is no difference b¢lw¢¢lZ |: luld F I'ORMAI" ill'illS. "lilt'

• It itlpul Illity be sillilY. If il VOll|ilin$ it de¢illlal, lids overrides the d sp¢cificitl;on, Otherwise,
_ I Iiives the ._mtlbcr ol" decimal d_its,

RFADI5) A IN 'F_,Y

interprets:

ltl2.34 as 12,J4

ItPl234 as 1,234

'_ tt,1234 a._ ,1234 '

_ An expolleIll lilly be supplied of the l'orlll; "

*._" ! _,

•

N

1980004512-334

t_-4 4ppcn,h _'

W|Icre¢ith¢l"I:Or _ 11111y_ Ollkll[Ct|.Blanksan"allowedprcccdhlg!ilc.sign.the firstdigit.I'.
_" _, _Illd the I'll"stdigit oI' lhc CXl'R'men[. L

l.'orWRI'I'I:st_ilcmcntswithl:I:ORMA]'.thestringprintedis"

lit rl

n Isthe_cond ntlt1_be!ltitheFt)RMAT. m istleteritlillcdby theinagnitti_.Icoftllcqtlanllty

to be printed The utinus Si_ll is p1"hItcdonly it"Illc qt|antity is it_'llaliw,

|f |here is enough roonl, a I¢I'O is added Io |he left of l|IC dechna| It"I|Icr¢ arc no oilier
dlgltS there. Any ,_ddition_l Isis|lions ar_ filled with blanks _Ir_)l_1the left. _'

l:orWRITI- slatenlentswithl: F'ORMAT. thequantityprlntedis: -':

• _1.bbbl'_¢c
I) "

['hc n11ntlsIS llritttcd only it' tile quantity is nc1,,atlve,One sisnificazlt digit ispri.ttcd to the
k'ft ot"tlle decimal point. Tills is0 it"the quantity is 0, n is taken t'rolUI11eFORMAT item.

I:or hotlz I: and I.: I:t)RMAT ilenls, It" the field lenlltll is insufficient, |hen _strrisks arc
printed and an error is senl,

F.5 A FORMAT ITEMS

A t'orm_ititcnls_ireu_.dh:1('IIARA('I'I:Rdataouly.l'hcyt.lkethefornl.

An

wllercn isthefiehllength.

For READ ,stalelnents, if the field lent:,th11is _1"¢aterthan the declared maximunl icnllIh
of the varlable,the leftlnOSlcharactersof the fieldarc s_tected.Otherwise.the cur1_nt

._" i, lengthof the('IIARAtq'ERv_riahleIss.-'tto thefieldIcnlith.

Fur WRITF statelnents,ifthefieldlengthwritt_llisRrratcrthanthe ctlrrcnllenl[lhof
lht'variable.Ihenblank..,arcaddedIothelet'l.Otherwise.theleftu)ostcharaclers.'irewrltt_n _.
to fill the field.

- E,6 FORMAT I/O WITH BIT VARIABLES

l'h¢_' ISno I:ORMAT item Sl'_ccit'i_.,allyfor BIT variables, Instead, the BIT an,.I CIIAR-
A('TI:R conversion functions may be eniployed with CIIARA('TER variables t_r Section
|3.|).

,'¢"

d

; '
4

' - 2,

] 9800045] 2-335

' !t.

Appendix E If-5 _i

i For example: _.
t DECLARE BITS BIT(8) INITIAL HEX 'IF';

' WRITE(6) CHARACTER $(@BIT) (BITS) IN 'A8':

i produces: '_

OO011Iil
!,

For READ statements, BIT values must be read into CHARACTERvariablesand the
S BIT convenio_ function applied.

E,7 U FORMATITEMS

U (undefined) FORMAT items are used for INTEGER, SCALAR. and CHARACTER.
They take the form:

lnte.rpretation of Un

CHARACTER An .;
INTEGER In

SCALAR En.d where d=n--7
Forexample:

DECLARE ARRAY(10.2)INTEGER, HEIGHT-AND-WEIGHT; i
WRITE(6) ('HEIGHT','WEIGHT',HEIGHT-AND-WEIGHT)

IN '2U7/;

a" _ would producea table such as:

i *" ' HEIGHT WEIGHT ,t

61 120 "_
70 152

s; los ;
E.8X FORMAT ITEMS

X FORMAT items are used to skip columns on input and output' j

._' The form:

, ,r t,- ".,'" isequivalent to TAB(n). _,

F

] 980004512-336

/','-OAppend*x E

E.q FORMAT QUOTE STRINGS

FORMAT quote strings art' used for constant character output. They have the form:

"'CCCCC°' or 'ccccc"

where c is a character

For example:

WRITE(6) ANS IN '"ANSWER=",I2.';

would produce:

ANSWER=2 I
I

E. IO P FORMAT ITEMS

There is a 'Picture" FORMAT capability which is very useful for mixing character and
nun_eric output data and specifying cohmm alignments.

WRITE(6) ANS IN 'P TIlE ANSWER IS $$$.$',

would produce:

TIlE ANSWER IS 87.2

another example:

WRITE(6) (NO.ARG I .ARG2,ARG I+2)

IN 'P TEST $$: $.$ + $.$ = $$.$';

would produce:

,, i, TEST 22:4.8 ,'- 5.3 = I0.1

f#
The P Fomlat item runs front the P to the first '.' or '/' encountered, or to the end of

the FORMAT character string. All characters are printed except for '$' anti '.', These are
ttg,d to define numecic tields for INTEGER and SCALAR data. Sitch fields take the forms:

$$$

$$$.

S.$$$

SSS,SS_,SS

where ',' placed the decimal :rod * places an exponent.

._r" For READ statements, consecutive '$', '.', and '*' define a field of the same length.
Other charactors c_,use corresponding columns to be skipped. Decimals in the input field

" ' take precedence over decimals in the FORMAT.

J_

1980004512-337

3

INDEX

- 2.9 CEILING 3-4,A-I
2-9 channels 2.5, 2-10,8-1

;'_ , 2-9 CIIARACTER 8-12
• 2-9 CharacterShzpmI Function 8-15, 13.7
+ 2-9 Characterstrin_t 8.12
[] 6.10 CLOCKTIMFA-8
tl 9-16 CLOSE 2-5

COLUMN 8-6.8-8
ABS 3-5, A-I columns 2.5
ABVAL 3.5, A4 commenfs 2-1, 2-2
ACCESS 11-8 common blocks I-I
addition 2-3, I-5, 3-20 comparisons 4.19, 4.20
AFTER 12_ :ompilatlon unit 11.1
alUPepte 3-3 compiler I-4
ALIGNED 9.19 compilerdbectives 8.4
AND 4-3,4.16, I-2, 13.2 component, 3.1

_t ARCOS A-3 COMPOOL1!-5
ARCOSH A.3 compool i i-I, ! 1-$
ARCSIN A.3 compoundstatements 4.1
ARCSINH A-3 concatenation 8-12
ARCTAN A-3, 3-2 bit 13.2
ARCTANHA-3 corr_ub I I-3
ARCTANZ A,3 CONSTANT 2.4.2.12
trguments 7-7, 7-12 convertiont 2-16
ARRAY 6-1 COS A-3
arrayt I-1,6-1 COSH A.3

of boolean 6.19 DATE A-8
multi.dimentiontl 6.5 DEC 13.7

amtyedexpremon6-10 DECLARE 1-2

Amembly£am_qle 1-1 group 2-1
u_lgnments 2.15 Simple 2.11
ASSIGNpantmeten 7.10,9.19 factored 2-11
aztedtkz(*) 2.1$ compo, nd 2-11
AT (tlrt_) 13.8 default tab 8.3

AT(real.time) 12-7, 12.8 DENSE 9-18,9.21
atUribuzes2-3, 2.11 DET 3.5_A.4

a" I AUTOMATIC7-14,7-15,11-18 DEVICEdirectlve 8.4

_'I DIV 'A-I
BIN 13.4 divttton 2.3, 3-20
BIT 1.2,4-16, 13-1, 13.6 do"at tign($) 3-7
bit ttdnp 4.18, 8-$, 13.1 DOUBLE 3.16, 3.17

lensthof 13-2 DO 4.9
blankn 2.3 CASE 4-20, 4.2 I
block tlru¢lm_ I 1.7 FOR 5.1
BOOLEAN I-2, 4.16, 4.20, 13-1 FOR(discrete) 5.6
bnmchln8 4.20 UNTIL 5.1,5.8
BY 5-2 WHILE 3-1,5.7

dynmnt¢storqle allocation 1.3
CALL 7.10
CANCEL 12.6, 12.17 EBCDIC 13-8
CASE 4.20 element2.13

#. CAT 8.12

,6

1980004512-338

1.2 Index

ELSE 4-1.4-4 GOTO 1.1, I-2,4-2, 4-1 I, 4-22, 5-1
END 4-9.5-1

_ EQUATEEXTERNAL 13.23 HEX 13-4
ERRGRP 10-14 hooks I-3
ERRNUM IO-4

ERROR 10.1 idenUtter 2-1.2-3.5-19
enor 10.1 IF 4-1.4-2, 4.4, 4-20

codes IO.4 IGNORE 10.6
handler 10-5 IN 12-7. 12-8
group IO-S INCLUDE 11-4
reco_ 10-1.10-7 INDEX A-7
deactivationof 10-5, IO-8
i/o IO4 indexing 13-12

EVENT 12.8 indirection 13-12
event variables 12-9 INITIAL 2-12
EVERY 12-5.12-6 INTEGER 2.11
EXCLUSIVE I1-17 intellen I-I.2-4
EXIT 5.4, 5.11 INVERSE 3-5, A.4
EXP A-3 i/o I-3, 14.8-1

l EXTERNAL i 1-6, 11.10 t/o conuol Junctions 8-6
ilo enon 104

FALSE 4-16
FILE 8-1,9.1o job control language 8.1
file 8-21

address 8.21 keywotds 1-3.2,3

expre_don 8.21 hbeb 2-3
number8-21 LATCHED"2-10
randomacceu 8-21 LENGFH 8-17 A.7

fixed point 3.19, 14-1 libraryroutines 3-1
fixup IO-I lINE 8.6,8.8

restoration 10-6 lines 2-2
floating point 3.19 _sts 13.15

FLOOR 3.4, A-I liltingFOR 5-1
formats compiler 2-9touzce 2-9

I/0 E-I literds 2.3,3.19
A format E.4 I.JUST A-7
E format E-2 LOCK 11-15,11.16
F format E-2 locked data 11-15

I I format E-2 U3G A.3
o J _ Pformat E-3

• • ' U format E-4 machine hm_a&¢ I.I
X loarat E-5 macrosI-4

multipleline 2-9 macro namer 3.13
sinsle line 2-9 manUlum3-16

FORTRAN I-I MATRIX 3.3
FSIM !-3.1-4 MATRIXF 14-5% Function?.1

,._ _ fuacttonl7-1. ! i.I matrix I,I, 2.12.2.13
befit-in 3-1, 3.3 MAX A-S

' MIDVALA-Iinvoc_ttionl 3-19

_: ofma)'t 6-22 MIN A-$
, ulerd,,f 7.1 MOD 3-$,A-1

I

q9800045q 2-339

I

Index i.3

muitiplicsUon1.3,2-5,3-20 _ 3-20 •
cross 1.3 PROGRAM 2-1

i mul-I_ol_amn'_n8 11-13
,_ NAME 9.19013-13 queues 13-15 ++

namevtriabhm 13-11
dedluin8 13-13 RANIX)M A-8
dlll_lvlmtq_ 13.14 RANIX)MG A.9
tnl_ 13.14 RI AD 2.16,2.1,8.1.8.9 4
neferenc_hI 13-14 RI.AI)ALL 8-1.8-19

NASA I-1 _al I-I +_
nelaUon 3.20 real-time 1.1.12-1
NEXTIME A-8 rccurslon I-3
NONHAL 7-14,7-15 RE+ENTRANT11-17
NORMALIZE 14-6, A-8 tegttt¢[1-5
NORMCOUNT 14-6. A.9 RI:.MAINDI'+RA.2
NOT I-2,4-8,4-3,4-16,13-2 REPEAT 4-22, 5.11

it NULL 13.|4 REPIAT AFTFR 12-6
REPEATEVERY 12-1, 12-5, 12-6

object module !-3 [el_lilion factor 2-14.2-15
OCT 13-4,13-7 REPLACE 3.12.8-2
ODD A.2 RI_FT 12.1 I. 12.12
OFF ERROR IO`8,IOJO RFTURN 4-22.5-3, 7-2.7-9
ON 12-8 RIGID o-20.9-21
opemton 2-3 RJLISTk-7
OR 1-2,4.3,4-16, 13-2 ROUND 3.4

rou,lding 3.4

plcidnlg 13-5 RUNTIME A-9
PAGE 8.6, 8.8
PAGED 8.4 SCALAR 2-11
imerlmeterl7-7, 7-12 scalarl 2.4
partitionsubJcflpt 3.8 _calln8
petumt mgtm 13-20 vector 2-8
PUI !.3 mamx 2-8
imlntetvllue 13.18 fixed 14-2
peecedence SCHEDULE I?.-I, 12-2, 12-12

operltot 2.6 icopln| niks 7.13. 1I-7

I" If exptelstmt3-19 SENDERROR 10-12
• • , operation, 3-20 SET 12-11,12.12ptecidoe 3-15 J_tplnllfunctims3.2.34, 6-I, 13.6

tpeftflet 3-18 CHARACTER 8-15.13-7
PRIO A.8 FIXED 14-4

•. PRIORITY 12-5 _haq__ (#) 2-I$,3.9
PROCEDURE7-10 SHL A.9
ixe_ttpdodty 12-3 SltR A.9 +

procew pr0c_wes 7.9, I!-1 SIGN A.2
pmoeuqmms 12.$ SIGNAL 12.q
PROD A.$ SIGNUM A.2

pnxluct SIN A.?. 3-2
. dot I-3,241,3.20 SINGLE 3-17 i

Cl_ 1.3, 24 _qH A.9 +
matrix 2-8 SIZE A-9 ++

+t" vi¢Io1mtUlx 2-8 lOUlm I.I
•. vectorouter 2-8 t

i
A
_t

" i

+.... , 1980004512-34£

I-4 Inde_

Space Shuttle 1-1 vector I-I, 2-13

SORT A.4.3-2 vector-matrix product 2-8
_- STATIC 7-15 vector t)utfl- product 2-8

STRUCTLIRI ' A-2 vecttu d_aping function

,ttructurfs q-I

¢ompont'nts q.l I WAIT 12-q, 12-12.12.10

¢opmcss 0.12 Wt|ILF 5.7
¢opmess six,¢tlief q 13 WRITF 2-2, 2-16, 8.1,8-5
declaration q-3

matching q-I I XOR 4-t7, A_

multi-copied q 12
template q-2. q-b
Iffnllltals t)-t%

)-.I, L..unquahfied t • t •-,

SUBBIT 13-8

subroutit|t's I-I

subscripts 1.2, ..., _.7

subscripted identifier 3-10
• subtraCtl,,m I..1, • '_ l.•O

SUM A.5

S_ S] I.M 10.7

system 1-3

TAB 8.b. ,q.8

TAN a-4
TANI! A-4

TASK I1-I I

tasks I1.1'.. 11-12

template I I-4
TFMIK)RAR_* 4-1 I, 4.12, 5-1
rFRMINAT! I..Ib. 1_.17

TIIFN 4-1.4-4
1"0 5,1

tokens ...I..4

TRA('F 3-5, A-4
TRANSH.R

ctmditltmal 4-22

unctmdittonal 4.22

TRANSPOSF 3-5, A-4
a P TRIM 8-13

• • TRUF. 4-1b
TRLIN('ATF 34

UNIT 3.5, A.4

UNPAGED 84

g- UNTIL I..7,• I.-c&• 12.10

update block 11-15, 11.17
UPDATI: PRIORITY 12.15

vm'lable type 2-q
VECTOR 2-12

VECTOR F 14-5

,ml["

#
r

;i
¢

1980004512-341

